1
0
mirror of https://github.com/golang/go synced 2024-10-04 14:41:25 -06:00
go/src/pkg/runtime/malloc.h
Russ Cox 67c83db60d runtime: use goc2c as much as possible
Package runtime's C functions written to be called from Go
started out written in C using carefully constructed argument
lists and the FLUSH macro to write a result back to memory.

For some functions, the appropriate parameter list ended up
being architecture-dependent due to differences in alignment,
so we added 'goc2c', which takes a .goc file containing Go func
declarations but C bodies, rewrites the Go func declaration to
equivalent C declarations for the target architecture, adds the
needed FLUSH statements, and writes out an equivalent C file.
That C file is compiled as part of package runtime.

Native Client's x86-64 support introduces the most complex
alignment rules yet, breaking many functions that could until
now be portably written in C. Using goc2c for those avoids the
breakage.

Separately, Keith's work on emitting stack information from
the C compiler would require the hand-written functions
to add #pragmas specifying how many arguments are result
parameters. Using goc2c for those avoids maintaining #pragmas.

For both reasons, use goc2c for as many Go-called C functions
as possible.

This CL is a replay of the bulk of CL 15400047 and CL 15790043,
both of which were reviewed as part of the NaCl port and are
checked in to the NaCl branch. This CL is part of bringing the
NaCl code into the main tree.

No new code here, just reformatting and occasional movement
into .h files.

LGTM=r
R=dave, alex.brainman, r
CC=golang-codereviews
https://golang.org/cl/65220044
2014-02-20 15:58:47 -05:00

579 lines
20 KiB
C

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Memory allocator, based on tcmalloc.
// http://goog-perftools.sourceforge.net/doc/tcmalloc.html
// The main allocator works in runs of pages.
// Small allocation sizes (up to and including 32 kB) are
// rounded to one of about 100 size classes, each of which
// has its own free list of objects of exactly that size.
// Any free page of memory can be split into a set of objects
// of one size class, which are then managed using free list
// allocators.
//
// The allocator's data structures are:
//
// FixAlloc: a free-list allocator for fixed-size objects,
// used to manage storage used by the allocator.
// MHeap: the malloc heap, managed at page (4096-byte) granularity.
// MSpan: a run of pages managed by the MHeap.
// MCentral: a shared free list for a given size class.
// MCache: a per-thread (in Go, per-M) cache for small objects.
// MStats: allocation statistics.
//
// Allocating a small object proceeds up a hierarchy of caches:
//
// 1. Round the size up to one of the small size classes
// and look in the corresponding MCache free list.
// If the list is not empty, allocate an object from it.
// This can all be done without acquiring a lock.
//
// 2. If the MCache free list is empty, replenish it by
// taking a bunch of objects from the MCentral free list.
// Moving a bunch amortizes the cost of acquiring the MCentral lock.
//
// 3. If the MCentral free list is empty, replenish it by
// allocating a run of pages from the MHeap and then
// chopping that memory into a objects of the given size.
// Allocating many objects amortizes the cost of locking
// the heap.
//
// 4. If the MHeap is empty or has no page runs large enough,
// allocate a new group of pages (at least 1MB) from the
// operating system. Allocating a large run of pages
// amortizes the cost of talking to the operating system.
//
// Freeing a small object proceeds up the same hierarchy:
//
// 1. Look up the size class for the object and add it to
// the MCache free list.
//
// 2. If the MCache free list is too long or the MCache has
// too much memory, return some to the MCentral free lists.
//
// 3. If all the objects in a given span have returned to
// the MCentral list, return that span to the page heap.
//
// 4. If the heap has too much memory, return some to the
// operating system.
//
// TODO(rsc): Step 4 is not implemented.
//
// Allocating and freeing a large object uses the page heap
// directly, bypassing the MCache and MCentral free lists.
//
// The small objects on the MCache and MCentral free lists
// may or may not be zeroed. They are zeroed if and only if
// the second word of the object is zero. A span in the
// page heap is zeroed unless s->needzero is set. When a span
// is allocated to break into small objects, it is zeroed if needed
// and s->needzero is set. There are two main benefits to delaying the
// zeroing this way:
//
// 1. stack frames allocated from the small object lists
// or the page heap can avoid zeroing altogether.
// 2. the cost of zeroing when reusing a small object is
// charged to the mutator, not the garbage collector.
//
// This C code was written with an eye toward translating to Go
// in the future. Methods have the form Type_Method(Type *t, ...).
typedef struct MCentral MCentral;
typedef struct MHeap MHeap;
typedef struct MSpan MSpan;
typedef struct MStats MStats;
typedef struct MLink MLink;
typedef struct MTypes MTypes;
typedef struct GCStats GCStats;
enum
{
PageShift = 13,
PageSize = 1<<PageShift,
PageMask = PageSize - 1,
};
typedef uintptr PageID; // address >> PageShift
enum
{
// Computed constant. The definition of MaxSmallSize and the
// algorithm in msize.c produce some number of different allocation
// size classes. NumSizeClasses is that number. It's needed here
// because there are static arrays of this length; when msize runs its
// size choosing algorithm it double-checks that NumSizeClasses agrees.
NumSizeClasses = 67,
// Tunable constants.
MaxSmallSize = 32<<10,
// Tiny allocator parameters, see "Tiny allocator" comment in malloc.goc.
TinySize = 16,
TinySizeClass = 2,
FixAllocChunk = 16<<10, // Chunk size for FixAlloc
MaxMHeapList = 1<<(20 - PageShift), // Maximum page length for fixed-size list in MHeap.
HeapAllocChunk = 1<<20, // Chunk size for heap growth
// Number of bits in page to span calculations (4k pages).
// On Windows 64-bit we limit the arena to 32GB or 35 bits (see below for reason).
// On other 64-bit platforms, we limit the arena to 128GB, or 37 bits.
// On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
#ifdef _64BIT
#ifdef GOOS_windows
// Windows counts memory used by page table into committed memory
// of the process, so we can't reserve too much memory.
// See http://golang.org/issue/5402 and http://golang.org/issue/5236.
MHeapMap_Bits = 35 - PageShift,
#else
MHeapMap_Bits = 37 - PageShift,
#endif
#else
MHeapMap_Bits = 32 - PageShift,
#endif
// Max number of threads to run garbage collection.
// 2, 3, and 4 are all plausible maximums depending
// on the hardware details of the machine. The garbage
// collector scales well to 8 cpus.
MaxGcproc = 8,
};
// Maximum memory allocation size, a hint for callers.
// This must be a #define instead of an enum because it
// is so large.
#ifdef _64BIT
#define MaxMem (1ULL<<(MHeapMap_Bits+PageShift)) /* 128 GB or 32 GB */
#else
#define MaxMem ((uintptr)-1)
#endif
// A generic linked list of blocks. (Typically the block is bigger than sizeof(MLink).)
struct MLink
{
MLink *next;
};
// SysAlloc obtains a large chunk of zeroed memory from the
// operating system, typically on the order of a hundred kilobytes
// or a megabyte.
//
// SysUnused notifies the operating system that the contents
// of the memory region are no longer needed and can be reused
// for other purposes.
// SysUsed notifies the operating system that the contents
// of the memory region are needed again.
//
// SysFree returns it unconditionally; this is only used if
// an out-of-memory error has been detected midway through
// an allocation. It is okay if SysFree is a no-op.
//
// SysReserve reserves address space without allocating memory.
// If the pointer passed to it is non-nil, the caller wants the
// reservation there, but SysReserve can still choose another
// location if that one is unavailable.
//
// SysMap maps previously reserved address space for use.
void* runtime·SysAlloc(uintptr nbytes, uint64 *stat);
void runtime·SysFree(void *v, uintptr nbytes, uint64 *stat);
void runtime·SysUnused(void *v, uintptr nbytes);
void runtime·SysUsed(void *v, uintptr nbytes);
void runtime·SysMap(void *v, uintptr nbytes, uint64 *stat);
void* runtime·SysReserve(void *v, uintptr nbytes);
// FixAlloc is a simple free-list allocator for fixed size objects.
// Malloc uses a FixAlloc wrapped around SysAlloc to manages its
// MCache and MSpan objects.
//
// Memory returned by FixAlloc_Alloc is not zeroed.
// The caller is responsible for locking around FixAlloc calls.
// Callers can keep state in the object but the first word is
// smashed by freeing and reallocating.
struct FixAlloc
{
uintptr size;
void (*first)(void *arg, byte *p); // called first time p is returned
void* arg;
MLink* list;
byte* chunk;
uint32 nchunk;
uintptr inuse; // in-use bytes now
uint64* stat;
};
void runtime·FixAlloc_Init(FixAlloc *f, uintptr size, void (*first)(void*, byte*), void *arg, uint64 *stat);
void* runtime·FixAlloc_Alloc(FixAlloc *f);
void runtime·FixAlloc_Free(FixAlloc *f, void *p);
// Statistics.
// Shared with Go: if you edit this structure, also edit type MemStats in mem.go.
struct MStats
{
// General statistics.
uint64 alloc; // bytes allocated and still in use
uint64 total_alloc; // bytes allocated (even if freed)
uint64 sys; // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
uint64 nlookup; // number of pointer lookups
uint64 nmalloc; // number of mallocs
uint64 nfree; // number of frees
// Statistics about malloc heap.
// protected by mheap.Lock
uint64 heap_alloc; // bytes allocated and still in use
uint64 heap_sys; // bytes obtained from system
uint64 heap_idle; // bytes in idle spans
uint64 heap_inuse; // bytes in non-idle spans
uint64 heap_released; // bytes released to the OS
uint64 heap_objects; // total number of allocated objects
// Statistics about allocation of low-level fixed-size structures.
// Protected by FixAlloc locks.
uint64 stacks_inuse; // bootstrap stacks
uint64 stacks_sys;
uint64 mspan_inuse; // MSpan structures
uint64 mspan_sys;
uint64 mcache_inuse; // MCache structures
uint64 mcache_sys;
uint64 buckhash_sys; // profiling bucket hash table
uint64 gc_sys;
uint64 other_sys;
// Statistics about garbage collector.
// Protected by mheap or stopping the world during GC.
uint64 next_gc; // next GC (in heap_alloc time)
uint64 last_gc; // last GC (in absolute time)
uint64 pause_total_ns;
uint64 pause_ns[256];
uint32 numgc;
bool enablegc;
bool debuggc;
// Statistics about allocation size classes.
struct {
uint32 size;
uint64 nmalloc;
uint64 nfree;
} by_size[NumSizeClasses];
};
#define mstats runtime·memStats
extern MStats mstats;
// Size classes. Computed and initialized by InitSizes.
//
// SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
// 1 <= sizeclass < NumSizeClasses, for n.
// Size class 0 is reserved to mean "not small".
//
// class_to_size[i] = largest size in class i
// class_to_allocnpages[i] = number of pages to allocate when
// making new objects in class i
int32 runtime·SizeToClass(int32);
uintptr runtime·roundupsize(uintptr);
extern int32 runtime·class_to_size[NumSizeClasses];
extern int32 runtime·class_to_allocnpages[NumSizeClasses];
extern int8 runtime·size_to_class8[1024/8 + 1];
extern int8 runtime·size_to_class128[(MaxSmallSize-1024)/128 + 1];
extern void runtime·InitSizes(void);
// Per-thread (in Go, per-M) cache for small objects.
// No locking needed because it is per-thread (per-M).
typedef struct MCacheList MCacheList;
struct MCacheList
{
MLink *list;
uint32 nlist;
};
struct MCache
{
// The following members are accessed on every malloc,
// so they are grouped here for better caching.
int32 next_sample; // trigger heap sample after allocating this many bytes
intptr local_cachealloc; // bytes allocated (or freed) from cache since last lock of heap
// Allocator cache for tiny objects w/o pointers.
// See "Tiny allocator" comment in malloc.goc.
byte* tiny;
uintptr tinysize;
// The rest is not accessed on every malloc.
MCacheList list[NumSizeClasses];
// Local allocator stats, flushed during GC.
uintptr local_nlookup; // number of pointer lookups
uintptr local_largefree; // bytes freed for large objects (>MaxSmallSize)
uintptr local_nlargefree; // number of frees for large objects (>MaxSmallSize)
uintptr local_nsmallfree[NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize)
};
void runtime·MCache_Refill(MCache *c, int32 sizeclass);
void runtime·MCache_Free(MCache *c, void *p, int32 sizeclass, uintptr size);
void runtime·MCache_ReleaseAll(MCache *c);
// MTypes describes the types of blocks allocated within a span.
// The compression field describes the layout of the data.
//
// MTypes_Empty:
// All blocks are free, or no type information is available for
// allocated blocks.
// The data field has no meaning.
// MTypes_Single:
// The span contains just one block.
// The data field holds the type information.
// The sysalloc field has no meaning.
// MTypes_Words:
// The span contains multiple blocks.
// The data field points to an array of type [NumBlocks]uintptr,
// and each element of the array holds the type of the corresponding
// block.
// MTypes_Bytes:
// The span contains at most seven different types of blocks.
// The data field points to the following structure:
// struct {
// type [8]uintptr // type[0] is always 0
// index [NumBlocks]byte
// }
// The type of the i-th block is: data.type[data.index[i]]
enum
{
MTypes_Empty = 0,
MTypes_Single = 1,
MTypes_Words = 2,
MTypes_Bytes = 3,
};
struct MTypes
{
byte compression; // one of MTypes_*
uintptr data;
};
enum
{
KindSpecialFinalizer = 1,
KindSpecialProfile = 2,
// Note: The finalizer special must be first because if we're freeing
// an object, a finalizer special will cause the freeing operation
// to abort, and we want to keep the other special records around
// if that happens.
};
typedef struct Special Special;
struct Special
{
Special* next; // linked list in span
uint16 offset; // span offset of object
byte kind; // kind of Special
};
// The described object has a finalizer set for it.
typedef struct SpecialFinalizer SpecialFinalizer;
struct SpecialFinalizer
{
Special;
FuncVal* fn;
uintptr nret;
Type* fint;
PtrType* ot;
};
// The described object is being heap profiled.
typedef struct Bucket Bucket; // from mprof.goc
typedef struct SpecialProfile SpecialProfile;
struct SpecialProfile
{
Special;
Bucket* b;
};
// An MSpan is a run of pages.
enum
{
MSpanInUse = 0,
MSpanFree,
MSpanListHead,
MSpanDead,
};
struct MSpan
{
MSpan *next; // in a span linked list
MSpan *prev; // in a span linked list
PageID start; // starting page number
uintptr npages; // number of pages in span
MLink *freelist; // list of free objects
// sweep generation:
// if sweepgen == h->sweepgen - 2, the span needs sweeping
// if sweepgen == h->sweepgen - 1, the span is currently being swept
// if sweepgen == h->sweepgen, the span is swept and ready to use
// h->sweepgen is incremented by 2 after every GC
uint32 sweepgen;
uint16 ref; // number of allocated objects in this span
uint8 sizeclass; // size class
uint8 state; // MSpanInUse etc
uint8 needzero; // needs to be zeroed before allocation
uintptr elemsize; // computed from sizeclass or from npages
int64 unusedsince; // First time spotted by GC in MSpanFree state
uintptr npreleased; // number of pages released to the OS
byte *limit; // end of data in span
MTypes types; // types of allocated objects in this span
Lock specialLock; // TODO: use to protect types also (instead of settype_lock)
Special *specials; // linked list of special records sorted by offset.
};
void runtime·MSpan_Init(MSpan *span, PageID start, uintptr npages);
void runtime·MSpan_EnsureSwept(MSpan *span);
bool runtime·MSpan_Sweep(MSpan *span);
// Every MSpan is in one doubly-linked list,
// either one of the MHeap's free lists or one of the
// MCentral's span lists. We use empty MSpan structures as list heads.
void runtime·MSpanList_Init(MSpan *list);
bool runtime·MSpanList_IsEmpty(MSpan *list);
void runtime·MSpanList_Insert(MSpan *list, MSpan *span);
void runtime·MSpanList_InsertBack(MSpan *list, MSpan *span);
void runtime·MSpanList_Remove(MSpan *span); // from whatever list it is in
// Central list of free objects of a given size.
struct MCentral
{
Lock;
int32 sizeclass;
MSpan nonempty;
MSpan empty;
int32 nfree;
};
void runtime·MCentral_Init(MCentral *c, int32 sizeclass);
int32 runtime·MCentral_AllocList(MCentral *c, MLink **first);
void runtime·MCentral_FreeList(MCentral *c, MLink *first);
bool runtime·MCentral_FreeSpan(MCentral *c, MSpan *s, int32 n, MLink *start, MLink *end);
// Main malloc heap.
// The heap itself is the "free[]" and "large" arrays,
// but all the other global data is here too.
struct MHeap
{
Lock;
MSpan free[MaxMHeapList]; // free lists of given length
MSpan freelarge; // free lists length >= MaxMHeapList
MSpan busy[MaxMHeapList]; // busy lists of large objects of given length
MSpan busylarge; // busy lists of large objects length >= MaxMHeapList
MSpan **allspans; // all spans out there
MSpan **sweepspans; // copy of allspans referenced by sweeper
uint32 nspan;
uint32 nspancap;
uint32 sweepgen; // sweep generation, see comment in MSpan
uint32 sweepdone; // all spans are swept
// span lookup
MSpan** spans;
uintptr spans_mapped;
// range of addresses we might see in the heap
byte *bitmap;
uintptr bitmap_mapped;
byte *arena_start;
byte *arena_used;
byte *arena_end;
// central free lists for small size classes.
// the padding makes sure that the MCentrals are
// spaced CacheLineSize bytes apart, so that each MCentral.Lock
// gets its own cache line.
struct {
MCentral;
byte pad[CacheLineSize];
} central[NumSizeClasses];
FixAlloc spanalloc; // allocator for Span*
FixAlloc cachealloc; // allocator for MCache*
FixAlloc specialfinalizeralloc; // allocator for SpecialFinalizer*
FixAlloc specialprofilealloc; // allocator for SpecialProfile*
Lock speciallock; // lock for sepcial record allocators.
// Malloc stats.
uint64 largefree; // bytes freed for large objects (>MaxSmallSize)
uint64 nlargefree; // number of frees for large objects (>MaxSmallSize)
uint64 nsmallfree[NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize)
};
extern MHeap runtime·mheap;
void runtime·MHeap_Init(MHeap *h);
MSpan* runtime·MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero);
void runtime·MHeap_Free(MHeap *h, MSpan *s, int32 acct);
MSpan* runtime·MHeap_Lookup(MHeap *h, void *v);
MSpan* runtime·MHeap_LookupMaybe(MHeap *h, void *v);
void runtime·MGetSizeClassInfo(int32 sizeclass, uintptr *size, int32 *npages, int32 *nobj);
void* runtime·MHeap_SysAlloc(MHeap *h, uintptr n);
void runtime·MHeap_MapBits(MHeap *h);
void runtime·MHeap_MapSpans(MHeap *h);
void runtime·MHeap_Scavenger(void);
void* runtime·mallocgc(uintptr size, uintptr typ, uint32 flag);
void* runtime·persistentalloc(uintptr size, uintptr align, uint64 *stat);
int32 runtime·mlookup(void *v, byte **base, uintptr *size, MSpan **s);
void runtime·gc(int32 force);
uintptr runtime·sweepone(void);
void runtime·markscan(void *v);
void runtime·marknogc(void *v);
void runtime·checkallocated(void *v, uintptr n);
void runtime·markfreed(void *v, uintptr n);
void runtime·checkfreed(void *v, uintptr n);
extern int32 runtime·checking;
void runtime·markspan(void *v, uintptr size, uintptr n, bool leftover);
void runtime·unmarkspan(void *v, uintptr size);
void runtime·purgecachedstats(MCache*);
void* runtime·cnew(Type*);
void* runtime·cnewarray(Type*, intgo);
void runtime·settype_flush(M*);
void runtime·settype_sysfree(MSpan*);
uintptr runtime·gettype(void*);
enum
{
// flags to malloc
FlagNoScan = 1<<0, // GC doesn't have to scan object
FlagNoProfiling = 1<<1, // must not profile
FlagNoGC = 1<<2, // must not free or scan for pointers
FlagNoZero = 1<<3, // don't zero memory
FlagNoInvokeGC = 1<<4, // don't invoke GC
};
void runtime·MProf_Malloc(void*, uintptr, uintptr);
void runtime·MProf_Free(Bucket*, void*, uintptr, bool);
void runtime·MProf_GC(void);
void runtime·MProf_TraceGC(void);
int32 runtime·gcprocs(void);
void runtime·helpgc(int32 nproc);
void runtime·gchelper(void);
void runtime·setprofilebucket(void *p, Bucket *b);
bool runtime·addfinalizer(void*, FuncVal *fn, uintptr, Type*, PtrType*);
void runtime·removefinalizer(void*);
void runtime·queuefinalizer(byte *p, FuncVal *fn, uintptr nret, Type *fint, PtrType *ot);
void runtime·freeallspecials(MSpan *span, void *p, uintptr size);
bool runtime·freespecial(Special *s, void *p, uintptr size, bool freed);
enum
{
TypeInfo_SingleObject = 0,
TypeInfo_Array = 1,
TypeInfo_Chan = 2,
// Enables type information at the end of blocks allocated from heap
DebugTypeAtBlockEnd = 0,
};
// defined in mgc0.go
void runtime·gc_m_ptr(Eface*);
void runtime·gc_itab_ptr(Eface*);
void runtime·memorydump(void);
int32 runtime·setgcpercent(int32);