mirror of
https://github.com/golang/go
synced 2024-11-23 05:40:04 -07:00
78b0013a07
(operates on 30bit values at a time instead of 20bit values) - refactored and cleaned up lots of code - more tests - close to check-in as complete library R=r OCL=18326 CL=18326
978 lines
18 KiB
Go
Executable File
978 lines
18 KiB
Go
Executable File
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package Bignum
|
|
|
|
// A package for arbitrary precision arithmethic.
|
|
// It implements the following numeric types:
|
|
//
|
|
// - Natural unsigned integer numbers
|
|
// - Integer signed integer numbers
|
|
// - Rational rational numbers
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Representation
|
|
//
|
|
// A natural number of the form
|
|
//
|
|
// x = x[n-1]*B^(n-1) + x[n-2]*B^(n-2) + ... + x[1]*B + x[0]
|
|
//
|
|
// with 0 <= x[i] < B and 0 <= i < n is stored in an array of length n,
|
|
// with the digits x[i] as the array elements.
|
|
//
|
|
// A natural number is normalized if the array contains no leading 0 digits.
|
|
// During arithmetic operations, denormalized values may occur which are
|
|
// always normalized before returning the final result. The normalized
|
|
// representation of 0 is the empty array (length = 0).
|
|
//
|
|
// The base B is chosen as large as possible on a given platform but there
|
|
// are a few constraints besides the size of the largest unsigned integer
|
|
// type available.
|
|
// TODO describe the constraints.
|
|
|
|
const LogW = 64;
|
|
const LogH = 4; // bits for a hex digit (= "small" number)
|
|
const LogB = LogW - LogH;
|
|
|
|
|
|
const (
|
|
L2 = LogB / 2;
|
|
B2 = 1 << L2;
|
|
M2 = B2 - 1;
|
|
|
|
L = L2 * 2;
|
|
B = 1 << L;
|
|
M = B - 1;
|
|
)
|
|
|
|
|
|
type (
|
|
Digit2 uint32;
|
|
Digit uint64;
|
|
)
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Support
|
|
|
|
// TODO replace this with a Go built-in assert
|
|
func assert(p bool) {
|
|
if !p {
|
|
panic("assert failed");
|
|
}
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Raw operations
|
|
|
|
func And1(z, x *[]Digit, y Digit) {
|
|
for i := len(x) - 1; i >= 0; i-- {
|
|
z[i] = x[i] & y;
|
|
}
|
|
}
|
|
|
|
|
|
func And(z, x, y *[]Digit) {
|
|
for i := len(x) - 1; i >= 0; i-- {
|
|
z[i] = x[i] & y[i];
|
|
}
|
|
}
|
|
|
|
|
|
func Or1(z, x *[]Digit, y Digit) {
|
|
for i := len(x) - 1; i >= 0; i-- {
|
|
z[i] = x[i] | y;
|
|
}
|
|
}
|
|
|
|
|
|
func Or(z, x, y *[]Digit) {
|
|
for i := len(x) - 1; i >= 0; i-- {
|
|
z[i] = x[i] | y[i];
|
|
}
|
|
}
|
|
|
|
|
|
func Xor1(z, x *[]Digit, y Digit) {
|
|
for i := len(x) - 1; i >= 0; i-- {
|
|
z[i] = x[i] ^ y;
|
|
}
|
|
}
|
|
|
|
|
|
func Xor(z, x, y *[]Digit) {
|
|
for i := len(x) - 1; i >= 0; i-- {
|
|
z[i] = x[i] ^ y[i];
|
|
}
|
|
}
|
|
|
|
|
|
func Add1(z, x *[]Digit, c Digit) Digit {
|
|
n := len(x);
|
|
for i := 0; i < n; i++ {
|
|
t := c + x[i];
|
|
c, z[i] = t>>L, t&M
|
|
}
|
|
return c;
|
|
}
|
|
|
|
|
|
func Add(z, x, y *[]Digit) Digit {
|
|
var c Digit;
|
|
n := len(x);
|
|
for i := 0; i < n; i++ {
|
|
t := c + x[i] + y[i];
|
|
c, z[i] = t>>L, t&M
|
|
}
|
|
return c;
|
|
}
|
|
|
|
|
|
func Sub1(z, x *[]Digit, c Digit) Digit {
|
|
n := len(x);
|
|
for i := 0; i < n; i++ {
|
|
t := c + x[i];
|
|
c, z[i] = Digit(int64(t)>>L), t&M; // arithmetic shift!
|
|
}
|
|
return c;
|
|
}
|
|
|
|
|
|
func Sub(z, x, y *[]Digit) Digit {
|
|
var c Digit;
|
|
n := len(x);
|
|
for i := 0; i < n; i++ {
|
|
t := c + x[i] - y[i];
|
|
c, z[i] = Digit(int64(t)>>L), t&M; // arithmetic shift!
|
|
}
|
|
return c;
|
|
}
|
|
|
|
|
|
// Returns c = x*y div B, z = x*y mod B.
|
|
func Mul11(x, y Digit) (Digit, Digit) {
|
|
// Split x and y into 2 sub-digits each (in base sqrt(B)),
|
|
// multiply the digits separately while avoiding overflow,
|
|
// and return the product as two separate digits.
|
|
|
|
const L0 = (L + 1)/2;
|
|
const L1 = L - L0;
|
|
const DL = L0 - L1; // 0 or 1
|
|
const b = 1<<L0;
|
|
const m = b - 1;
|
|
|
|
// split x and y into sub-digits
|
|
// x = (x1*b + x0)
|
|
// y = (y1*b + y0)
|
|
x1, x0 := x>>L0, x&m;
|
|
y1, y0 := y>>L0, y&m;
|
|
|
|
// x*y = t2*b^2 + t1*b + t0
|
|
t0 := x0*y0;
|
|
t1 := x1*y0 + x0*y1;
|
|
t2 := x1*y1;
|
|
|
|
// compute the result digits but avoid overflow
|
|
// z = z1*B + z0 = x*y
|
|
z0 := (t1<<L0 + t0)&M;
|
|
z1 := t2<<DL + (t1 + t0>>L0)>>L1;
|
|
|
|
return z1, z0;
|
|
}
|
|
|
|
|
|
func Mul(z, x, y *[]Digit) {
|
|
n := len(x);
|
|
m := len(y);
|
|
for j := 0; j < m; j++ {
|
|
d := y[j];
|
|
if d != 0 {
|
|
c := Digit(0);
|
|
for i := 0; i < n; i++ {
|
|
// z[i+j] += c + x[i]*d;
|
|
z1, z0 := Mul11(x[i], d);
|
|
t := c + z[i+j] + z0;
|
|
c, z[i+j] = t>>L, t&M;
|
|
c += z1;
|
|
}
|
|
z[n+j] = c;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
func Mul1(z, x *[]Digit2, y Digit2) Digit2 {
|
|
n := len(x);
|
|
var c Digit;
|
|
f := Digit(y);
|
|
for i := 0; i < n; i++ {
|
|
t := c + Digit(x[i])*f;
|
|
c, z[i] = t>>L2, Digit2(t&M2);
|
|
}
|
|
return Digit2(c);
|
|
}
|
|
|
|
|
|
func Div1(z, x *[]Digit2, y Digit2) Digit2 {
|
|
n := len(x);
|
|
var c Digit;
|
|
d := Digit(y);
|
|
for i := n-1; i >= 0; i-- {
|
|
t := c*B2 + Digit(x[i]);
|
|
c, z[i] = t%d, Digit2(t/d);
|
|
}
|
|
return Digit2(c);
|
|
}
|
|
|
|
|
|
func Shl(z, x *[]Digit, s uint) Digit {
|
|
assert(s <= L);
|
|
n := len(x);
|
|
var c Digit;
|
|
for i := 0; i < n; i++ {
|
|
c, z[i] = x[i] >> (L-s), x[i] << s & M | c;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
|
|
func Shr(z, x *[]Digit, s uint) Digit {
|
|
assert(s <= L);
|
|
n := len(x);
|
|
var c Digit;
|
|
for i := n - 1; i >= 0; i-- {
|
|
c, z[i] = x[i] << (L-s) & M, x[i] >> s | c;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Support
|
|
|
|
func IsSmall(x Digit) bool {
|
|
return x < 1<<LogH;
|
|
}
|
|
|
|
|
|
func Split(x Digit) (Digit, Digit) {
|
|
return x>>L, x&M;
|
|
}
|
|
|
|
|
|
export func Dump(x *[]Digit) {
|
|
print("[", len(x), "]");
|
|
for i := len(x) - 1; i >= 0; i-- {
|
|
print(" ", x[i]);
|
|
}
|
|
println();
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Natural numbers
|
|
//
|
|
// Naming conventions
|
|
//
|
|
// B, b bases
|
|
// c carry
|
|
// x, y operands
|
|
// z result
|
|
// n, m n = len(x), m = len(y)
|
|
|
|
|
|
export type Natural []Digit;
|
|
export var NatZero *Natural = new(Natural, 0);
|
|
|
|
|
|
export func Nat(x Digit) *Natural {
|
|
var z *Natural;
|
|
switch {
|
|
case x == 0:
|
|
z = NatZero;
|
|
case x < B:
|
|
z = new(Natural, 1);
|
|
z[0] = x;
|
|
return z;
|
|
default:
|
|
z = new(Natural, 2);
|
|
z[1], z[0] = Split(x);
|
|
}
|
|
return z;
|
|
}
|
|
|
|
|
|
func Normalize(x *Natural) *Natural {
|
|
n := len(x);
|
|
for n > 0 && x[n - 1] == 0 { n-- }
|
|
if n < len(x) {
|
|
x = x[0 : n]; // trim leading 0's
|
|
}
|
|
return x;
|
|
}
|
|
|
|
|
|
func Normalize2(x *[]Digit2) *[]Digit2 {
|
|
n := len(x);
|
|
for n > 0 && x[n - 1] == 0 { n-- }
|
|
if n < len(x) {
|
|
x = x[0 : n]; // trim leading 0's
|
|
}
|
|
return x;
|
|
}
|
|
|
|
|
|
// Predicates
|
|
|
|
func (x *Natural) IsZero() bool { return len(x) == 0; }
|
|
func (x *Natural) IsOdd() bool { return len(x) > 0 && x[0]&1 != 0; }
|
|
|
|
|
|
func (x *Natural) Add(y *Natural) *Natural {
|
|
n := len(x);
|
|
m := len(y);
|
|
if n < m {
|
|
return y.Add(x);
|
|
}
|
|
|
|
z := new(Natural, n + 1);
|
|
c := Add(z[0 : m], x[0 : m], y);
|
|
z[n] = Add1(z[m : n], x[m : n], c);
|
|
|
|
return Normalize(z);
|
|
}
|
|
|
|
|
|
func (x *Natural) Sub(y *Natural) *Natural {
|
|
n := len(x);
|
|
m := len(y);
|
|
if n < m {
|
|
panic("underflow")
|
|
}
|
|
|
|
z := new(Natural, n);
|
|
c := Sub(z[0 : m], x[0 : m], y);
|
|
if Sub1(z[m : n], x[m : n], c) != 0 {
|
|
panic("underflow");
|
|
}
|
|
|
|
return Normalize(z);
|
|
}
|
|
|
|
|
|
// Computes x = x*a + c (in place) for "small" a's.
|
|
func (x* Natural) MulAdd1(a, c Digit) *Natural {
|
|
assert(IsSmall(a-1) && IsSmall(c));
|
|
n := len(x);
|
|
z := new(Natural, n + 1);
|
|
|
|
for i := 0; i < n; i++ { c, z[i] = Split(c + x[i]*a); }
|
|
z[n] = c;
|
|
|
|
return Normalize(z);
|
|
}
|
|
|
|
|
|
func (x *Natural) Mul(y *Natural) *Natural {
|
|
n := len(x);
|
|
m := len(y);
|
|
|
|
z := new(Natural, n + m);
|
|
Mul(z, x, y);
|
|
|
|
return Normalize(z);
|
|
}
|
|
|
|
|
|
func Pop1(x Digit) uint {
|
|
n := uint(0);
|
|
for x != 0 {
|
|
x &= x-1;
|
|
n++;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
|
|
func (x *Natural) Pop() uint {
|
|
n := uint(0);
|
|
for i := len(x) - 1; i >= 0; i-- {
|
|
n += Pop1(x[i]);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
|
|
func (x *Natural) Pow(n uint) *Natural {
|
|
z := Nat(1);
|
|
for n > 0 {
|
|
// z * x^n == x^n0
|
|
if n&1 == 1 {
|
|
z = z.Mul(x);
|
|
}
|
|
x, n = x.Mul(x), n/2;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
|
|
func (x *Natural) Shl(s uint) *Natural {
|
|
n := uint(len(x));
|
|
m := n + s/L;
|
|
z := new(Natural, m+1);
|
|
|
|
z[m] = Shl(z[m-n : m], x, s%L);
|
|
|
|
return Normalize(z);
|
|
}
|
|
|
|
|
|
func (x *Natural) Shr(s uint) *Natural {
|
|
n := uint(len(x));
|
|
m := n - s/L;
|
|
if m > n { // check for underflow
|
|
m = 0;
|
|
}
|
|
z := new(Natural, m);
|
|
|
|
Shr(z, x[n-m : n], s%L);
|
|
|
|
return Normalize(z);
|
|
}
|
|
|
|
|
|
// DivMod needs multi-precision division which is not available if Digit
|
|
// is already using the largest uint size. Split base before division,
|
|
// and merge again after. Each Digit is split into 2 Digit2's.
|
|
|
|
func Unpack(x *Natural) *[]Digit2 {
|
|
// TODO Use Log() for better result - don't need Normalize2 at the end!
|
|
n := len(x);
|
|
z := new([]Digit2, n*2 + 1); // add space for extra digit (used by DivMod)
|
|
for i := 0; i < n; i++ {
|
|
t := x[i];
|
|
z[i*2] = Digit2(t & M2);
|
|
z[i*2 + 1] = Digit2(t >> L2 & M2);
|
|
}
|
|
return Normalize2(z);
|
|
}
|
|
|
|
|
|
func Pack(x *[]Digit2) *Natural {
|
|
n := (len(x) + 1) / 2;
|
|
z := new(Natural, n);
|
|
if len(x) & 1 == 1 {
|
|
// handle odd len(x)
|
|
n--;
|
|
z[n] = Digit(x[n*2]);
|
|
}
|
|
for i := 0; i < n; i++ {
|
|
z[i] = Digit(x[i*2 + 1]) << L2 | Digit(x[i*2]);
|
|
}
|
|
return Normalize(z);
|
|
}
|
|
|
|
|
|
// Division and modulo computation - destroys x and y. Based on the
|
|
// algorithms described in:
|
|
//
|
|
// 1) D. Knuth, "The Art of Computer Programming. Volume 2. Seminumerical
|
|
// Algorithms." Addison-Wesley, Reading, 1969.
|
|
//
|
|
// 2) P. Brinch Hansen, Multiple-length division revisited: A tour of the
|
|
// minefield. "Software - Practice and Experience 24", (June 1994),
|
|
// 579-601. John Wiley & Sons, Ltd.
|
|
//
|
|
// Specifically, the inplace computation of quotient and remainder
|
|
// is described in 1), while 2) provides the background for a more
|
|
// accurate initial guess of the trial digit.
|
|
|
|
func DivMod2(x, y *[]Digit2) (*[]Digit2, *[]Digit2) {
|
|
const b = B2;
|
|
|
|
n := len(x);
|
|
m := len(y);
|
|
assert(m > 0); // division by zero
|
|
assert(n+1 <= cap(x)); // space for one extra digit (should it be == ?)
|
|
x = x[0 : n + 1];
|
|
|
|
if m == 1 {
|
|
// division by single digit
|
|
// result is shifted left by 1 in place!
|
|
x[0] = Div1(x[1 : n+1], x[0 : n], y[0]);
|
|
|
|
} else if m > n {
|
|
// quotient = 0, remainder = x
|
|
// TODO in this case we shouldn't even split base - FIX THIS
|
|
m = n;
|
|
|
|
} else {
|
|
// general case
|
|
assert(2 <= m && m <= n);
|
|
assert(x[n] == 0);
|
|
|
|
// normalize x and y
|
|
f := b/(Digit(y[m-1]) + 1);
|
|
Mul1(x, x, Digit2(f));
|
|
Mul1(y, y, Digit2(f));
|
|
assert(b/2 <= y[m-1] && y[m-1] < b); // incorrect scaling
|
|
|
|
y1, y2 := Digit(y[m-1]), Digit(y[m-2]);
|
|
d2 := Digit(y1)*b + Digit(y2);
|
|
for i := n-m; i >= 0; i-- {
|
|
k := i+m;
|
|
|
|
// compute trial digit
|
|
var q Digit;
|
|
{ // Knuth
|
|
x0, x1, x2 := Digit(x[k]), Digit(x[k-1]), Digit(x[k-2]);
|
|
if x0 != y1 {
|
|
q = (x0*b + x1)/y1;
|
|
} else {
|
|
q = b-1;
|
|
}
|
|
for y2 * q > (x0*b + x1 - y1*q)*b + x2 {
|
|
q--
|
|
}
|
|
}
|
|
|
|
// subtract y*q
|
|
c := Digit(0);
|
|
for j := 0; j < m; j++ {
|
|
t := c + Digit(x[i+j]) - Digit(y[j])*q; // arithmetic shift!
|
|
c, x[i+j] = Digit(int64(t)>>L2), Digit2(t&M2);
|
|
}
|
|
|
|
// correct if trial digit was too large
|
|
if c + Digit(x[k]) != 0 {
|
|
// add y
|
|
c := Digit(0);
|
|
for j := 0; j < m; j++ {
|
|
t := c + Digit(x[i+j]) + Digit(y[j]);
|
|
c, x[i+j] = uint64(int64(t) >> L2), Digit2(t & M2)
|
|
}
|
|
assert(c + Digit(x[k]) == 0);
|
|
// correct trial digit
|
|
q--;
|
|
}
|
|
|
|
x[k] = Digit2(q);
|
|
}
|
|
|
|
// undo normalization for remainder
|
|
c := Div1(x[0 : m], x[0 : m], Digit2(f));
|
|
assert(c == 0);
|
|
}
|
|
|
|
return x[m : n+1], x[0 : m];
|
|
}
|
|
|
|
|
|
func (x *Natural) Div(y *Natural) *Natural {
|
|
q, r := DivMod2(Unpack(x), Unpack(y));
|
|
return Pack(q);
|
|
}
|
|
|
|
|
|
func (x *Natural) Mod(y *Natural) *Natural {
|
|
q, r := DivMod2(Unpack(x), Unpack(y));
|
|
return Pack(r);
|
|
}
|
|
|
|
|
|
func (x *Natural) DivMod(y *Natural) (*Natural, *Natural) {
|
|
q, r := DivMod2(Unpack(x), Unpack(y));
|
|
return Pack(q), Pack(r);
|
|
}
|
|
|
|
|
|
func (x *Natural) Cmp(y *Natural) int {
|
|
n := len(x);
|
|
m := len(y);
|
|
|
|
if n != m || n == 0 {
|
|
return n - m;
|
|
}
|
|
|
|
i := n - 1;
|
|
for i > 0 && x[i] == y[i] { i--; }
|
|
|
|
d := 0;
|
|
switch {
|
|
case x[i] < y[i]: d = -1;
|
|
case x[i] > y[i]: d = 1;
|
|
}
|
|
|
|
return d;
|
|
}
|
|
|
|
|
|
func Log2(x Digit) int {
|
|
n := -1;
|
|
for x != 0 { x = x >> 1; n++; } // BUG >>= broken for uint64
|
|
return n;
|
|
}
|
|
|
|
|
|
func (x *Natural) Log2() int {
|
|
n := len(x);
|
|
if n > 0 {
|
|
n = (n - 1)*L + Log2(x[n - 1]);
|
|
} else {
|
|
n = -1;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
|
|
func (x *Natural) And(y *Natural) *Natural {
|
|
n := len(x);
|
|
m := len(y);
|
|
if n < m {
|
|
return y.And(x);
|
|
}
|
|
|
|
z := new(Natural, n);
|
|
And(z[0 : m], x[0 : m], y);
|
|
Or1(z[m : n], x[m : n], 0);
|
|
|
|
return Normalize(z);
|
|
}
|
|
|
|
|
|
func (x *Natural) Or(y *Natural) *Natural {
|
|
n := len(x);
|
|
m := len(y);
|
|
if n < m {
|
|
return y.Or(x);
|
|
}
|
|
|
|
z := new(Natural, n);
|
|
Or(z[0 : m], x[0 : m], y);
|
|
Or1(z[m : n], x[m : n], 0);
|
|
|
|
return Normalize(z);
|
|
}
|
|
|
|
|
|
func (x *Natural) Xor(y *Natural) *Natural {
|
|
n := len(x);
|
|
m := len(y);
|
|
if n < m {
|
|
return y.Xor(x);
|
|
}
|
|
|
|
z := new(Natural, n);
|
|
Xor(z[0 : m], x[0 : m], y);
|
|
Or1(z[m : n], x[m : n], 0);
|
|
|
|
return Normalize(z);
|
|
}
|
|
|
|
|
|
// Computes x = x div d (in place - the recv maybe modified) for "small" d's.
|
|
// Returns updated x and x mod d.
|
|
func (x *Natural) DivMod1(d Digit) (*Natural, Digit) {
|
|
assert(0 < d && IsSmall(d - 1));
|
|
|
|
c := Digit(0);
|
|
for i := len(x) - 1; i >= 0; i-- {
|
|
t := c<<L + x[i];
|
|
c, x[i] = t%d, t/d;
|
|
}
|
|
|
|
return Normalize(x), c;
|
|
}
|
|
|
|
|
|
func (x *Natural) String(base uint) string {
|
|
if x.IsZero() {
|
|
return "0";
|
|
}
|
|
|
|
// allocate string
|
|
assert(2 <= base && base <= 16);
|
|
n := (x.Log2() + 1) / Log2(Digit(base)) + 1; // TODO why the +1?
|
|
s := new([]byte, n);
|
|
|
|
// convert
|
|
|
|
// don't destroy x, make a copy
|
|
t := new(Natural, len(x));
|
|
Or1(t, x, 0); // copy x
|
|
|
|
i := n;
|
|
for !t.IsZero() {
|
|
i--;
|
|
var d Digit;
|
|
t, d = t.DivMod1(Digit(base));
|
|
s[i] = "0123456789abcdef"[d];
|
|
};
|
|
|
|
return string(s[i : n]);
|
|
}
|
|
|
|
|
|
export func MulRange(a, b Digit) *Natural {
|
|
switch {
|
|
case a > b: return Nat(1);
|
|
case a == b: return Nat(a);
|
|
case a + 1 == b: return Nat(a).Mul(Nat(b));
|
|
}
|
|
m := (a + b)>>1;
|
|
assert(a <= m && m < b);
|
|
return MulRange(a, m).Mul(MulRange(m + 1, b));
|
|
}
|
|
|
|
|
|
export func Fact(n Digit) *Natural {
|
|
// Using MulRange() instead of the basic for-loop
|
|
// lead to faster factorial computation.
|
|
return MulRange(2, n);
|
|
}
|
|
|
|
|
|
func (x *Natural) Gcd(y *Natural) *Natural {
|
|
// Euclidean algorithm.
|
|
for !y.IsZero() {
|
|
x, y = y, x.Mod(y);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
|
|
func HexValue(ch byte) uint {
|
|
d := uint(1 << LogH);
|
|
switch {
|
|
case '0' <= ch && ch <= '9': d = uint(ch - '0');
|
|
case 'a' <= ch && ch <= 'f': d = uint(ch - 'a') + 10;
|
|
case 'A' <= ch && ch <= 'F': d = uint(ch - 'A') + 10;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
|
|
// TODO auto-detect base if base argument is 0
|
|
export func NatFromString(s string, base uint) *Natural {
|
|
x := NatZero;
|
|
for i := 0; i < len(s); i++ {
|
|
d := HexValue(s[i]);
|
|
if d < base {
|
|
x = x.MulAdd1(Digit(base), Digit(d));
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
return x;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Algorithms
|
|
|
|
export type T interface {
|
|
IsZero() bool;
|
|
Mod(y T) bool;
|
|
}
|
|
|
|
export func Gcd(x, y T) T {
|
|
// Euclidean algorithm.
|
|
for !y.IsZero() {
|
|
x, y = y, x.Mod(y);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Integer numbers
|
|
|
|
export type Integer struct {
|
|
sign bool;
|
|
mant *Natural;
|
|
}
|
|
|
|
|
|
export func Int(x int64) *Integer {
|
|
return nil;
|
|
}
|
|
|
|
|
|
func (x *Integer) Add(y *Integer) *Integer {
|
|
var z *Integer;
|
|
if x.sign == y.sign {
|
|
// x + y == x + y
|
|
// (-x) + (-y) == -(x + y)
|
|
z = &Integer{x.sign, x.mant.Add(y.mant)};
|
|
} else {
|
|
// x + (-y) == x - y == -(y - x)
|
|
// (-x) + y == y - x == -(x - y)
|
|
if x.mant.Cmp(y.mant) >= 0 {
|
|
z = &Integer{false, x.mant.Sub(y.mant)};
|
|
} else {
|
|
z = &Integer{true, y.mant.Sub(x.mant)};
|
|
}
|
|
}
|
|
if x.sign {
|
|
z.sign = !z.sign;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
|
|
func (x *Integer) Sub(y *Integer) *Integer {
|
|
var z *Integer;
|
|
if x.sign != y.sign {
|
|
// x - (-y) == x + y
|
|
// (-x) - y == -(x + y)
|
|
z = &Integer{x.sign, x.mant.Add(y.mant)};
|
|
} else {
|
|
// x - y == x - y == -(y - x)
|
|
// (-x) - (-y) == y - x == -(x - y)
|
|
if x.mant.Cmp(y.mant) >= 0 {
|
|
z = &Integer{false, x.mant.Sub(y.mant)};
|
|
} else {
|
|
z = &Integer{true, y.mant.Sub(x.mant)};
|
|
}
|
|
}
|
|
if x.sign {
|
|
z.sign = !z.sign;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
|
|
func (x *Integer) Mul(y *Integer) *Integer {
|
|
// x * y == x * y
|
|
// x * (-y) == -(x * y)
|
|
// (-x) * y == -(x * y)
|
|
// (-x) * (-y) == x * y
|
|
return &Integer{x.sign != y.sign, x.mant.Mul(y.mant)};
|
|
}
|
|
|
|
|
|
func (x *Integer) Quo(y *Integer) *Integer {
|
|
// x / y == x / y
|
|
// x / (-y) == -(x / y)
|
|
// (-x) / y == -(x / y)
|
|
// (-x) / (-y) == x / y
|
|
return &Integer{x.sign != y.sign, x.mant.Div(y.mant)};
|
|
}
|
|
|
|
|
|
func (x *Integer) Rem(y *Integer) *Integer {
|
|
// x % y == x % y
|
|
// x % (-y) == x % y
|
|
// (-x) % y == -(x % y)
|
|
// (-x) % (-y) == -(x % y)
|
|
return &Integer{y.sign, x.mant.Mod(y.mant)};
|
|
}
|
|
|
|
|
|
func (x *Integer) QuoRem(y *Integer) (*Integer, *Integer) {
|
|
q, r := x.mant.DivMod(y.mant);
|
|
return &Integer{x.sign != y.sign, q}, &Integer{y.sign, q};
|
|
}
|
|
|
|
|
|
func (x *Integer) Div(y *Integer) *Integer {
|
|
q, r := x.mant.DivMod(y.mant);
|
|
return nil;
|
|
}
|
|
|
|
|
|
func (x *Integer) Mod(y *Integer) *Integer {
|
|
panic("UNIMPLEMENTED");
|
|
return nil;
|
|
}
|
|
|
|
|
|
func (x *Integer) Cmp(y *Integer) int {
|
|
panic("UNIMPLEMENTED");
|
|
return 0;
|
|
}
|
|
|
|
|
|
func (x *Integer) String(base uint) string {
|
|
if x.mant.IsZero() {
|
|
return "0";
|
|
}
|
|
var s string;
|
|
if x.sign {
|
|
s = "-";
|
|
}
|
|
return s + x.mant.String(base);
|
|
}
|
|
|
|
|
|
export func IntFromString(s string, base uint) *Integer {
|
|
// get sign, if any
|
|
sign := false;
|
|
if len(s) > 0 && (s[0] == '-' || s[0] == '+') {
|
|
sign = s[0] == '-';
|
|
}
|
|
return &Integer{sign, NatFromString(s[1 : len(s)], base)};
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Rational numbers
|
|
|
|
export type Rational struct {
|
|
a, b *Integer; // a = numerator, b = denominator
|
|
}
|
|
|
|
|
|
func (x *Rational) Normalize() *Rational {
|
|
f := x.a.mant.Gcd(x.b.mant);
|
|
x.a.mant = x.a.mant.Div(f);
|
|
x.b.mant = x.b.mant.Div(f);
|
|
return x;
|
|
}
|
|
|
|
|
|
func Rat(a, b *Integer) *Rational {
|
|
return (&Rational{a, b}).Normalize();
|
|
}
|
|
|
|
|
|
func (x *Rational) Add(y *Rational) *Rational {
|
|
return Rat((x.a.Mul(y.b)).Add(x.b.Mul(y.a)), x.b.Mul(y.b));
|
|
}
|
|
|
|
|
|
func (x *Rational) Sub(y *Rational) *Rational {
|
|
return Rat((x.a.Mul(y.b)).Sub(x.b.Mul(y.a)), x.b.Mul(y.b));
|
|
}
|
|
|
|
|
|
func (x *Rational) Mul(y *Rational) *Rational {
|
|
return Rat(x.a.Mul(y.a), x.b.Mul(y.b));
|
|
}
|
|
|
|
|
|
func (x *Rational) Div(y *Rational) *Rational {
|
|
return Rat(x.a.Mul(y.b), x.b.Mul(y.a));
|
|
}
|
|
|
|
|
|
func (x *Rational) Mod(y *Rational) *Rational {
|
|
panic("UNIMPLEMENTED");
|
|
return nil;
|
|
}
|
|
|
|
|
|
func (x *Rational) Cmp(y *Rational) int {
|
|
panic("UNIMPLEMENTED");
|
|
return 0;
|
|
}
|
|
|
|
|
|
export func RatFromString(s string) *Rational {
|
|
panic("UNIMPLEMENTED");
|
|
return nil;
|
|
}
|