1
0
mirror of https://github.com/golang/go synced 2024-10-01 13:18:33 -06:00
go/pointer/util.go
Alan Donovan 94c387c610 go.tools/pointer: implement (reflect.Value).Call.
The implementation follows the basic pattern of an indirect
function call (genDynamicCall).

We use the same trick as SetFinalizer so that direct calls to
(r.V).Call, which are overwhelmingly the norm, are inlined.

Bug fix (and simplification): calling untag() to unbox a
reflect.Value is wrong for reflect.Values containing interfaces
(rare).  Now, we call untag for concrete types and typeFilter
for interface types, and we can use this pattern in all cases.
It corresponds to the ssa.TypeAssert operator, so we call
it typeAssert.  Added tests to cover this.

We also specialize reflect.{In,Out} when the operand is an int
literal.

+ Tests.

Also:
- make taggedValue() panic, not return nil, eliminating many checks.
  We call isTaggedValue for the one place that cares.
- pointer_test: recover from panics in Analyze() and dump the log.

R=crawshaw
CC=golang-dev
https://golang.org/cl/14426050
2013-10-29 21:57:53 -04:00

314 lines
7.7 KiB
Go

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pointer
import (
"bytes"
"fmt"
"code.google.com/p/go.tools/go/types"
)
// CanPoint reports whether the type T is pointerlike,
// for the purposes of this analysis.
func CanPoint(T types.Type) bool {
switch T := T.(type) {
case *types.Named:
if obj := T.Obj(); obj.Name() == "Value" && obj.Pkg().Path() == "reflect" {
return true // treat reflect.Value like interface{}
}
return CanPoint(T.Underlying())
case *types.Pointer, *types.Interface, *types.Map, *types.Chan, *types.Signature, *types.Slice:
return true
}
return false // array struct tuple builtin basic
}
// CanHaveDynamicTypes reports whether the type T can "hold" dynamic types,
// i.e. is an interface (incl. reflect.Type) or a reflect.Value.
//
func CanHaveDynamicTypes(T types.Type) bool {
switch T := T.(type) {
case *types.Named:
if obj := T.Obj(); obj.Name() == "Value" && obj.Pkg().Path() == "reflect" {
return true // reflect.Value
}
return CanHaveDynamicTypes(T.Underlying())
case *types.Interface:
return true
}
return false
}
// isInterface reports whether T is an interface type.
func isInterface(T types.Type) bool {
_, ok := T.Underlying().(*types.Interface)
return ok
}
// mustDeref returns the element type of its argument, which must be a
// pointer; panic ensues otherwise.
func mustDeref(typ types.Type) types.Type {
return typ.Underlying().(*types.Pointer).Elem()
}
// deref returns a pointer's element type; otherwise it returns typ.
func deref(typ types.Type) types.Type {
if p, ok := typ.Underlying().(*types.Pointer); ok {
return p.Elem()
}
return typ
}
// A fieldInfo describes one subelement (node) of the flattening-out
// of a type T: the subelement's type and its path from the root of T.
//
// For example, for this type:
// type line struct{ points []struct{x, y int} }
// flatten() of the inner struct yields the following []fieldInfo:
// struct{ x, y int } ""
// int ".x"
// int ".y"
// and flatten(line) yields:
// struct{ points []struct{x, y int} } ""
// struct{ x, y int } ".points[*]"
// int ".points[*].x
// int ".points[*].y"
//
type fieldInfo struct {
typ types.Type
// op and tail describe the path to the element (e.g. ".a#2.b[*].c").
op interface{} // *Array: true; *Tuple: int; *Struct: *types.Var; *Named: nil
tail *fieldInfo
}
// path returns a user-friendly string describing the subelement path.
//
func (fi *fieldInfo) path() string {
var buf bytes.Buffer
for p := fi; p != nil; p = p.tail {
switch op := p.op.(type) {
case bool:
fmt.Fprintf(&buf, "[*]")
case int:
fmt.Fprintf(&buf, "#%d", op)
case *types.Var:
fmt.Fprintf(&buf, ".%s", op.Name())
}
}
return buf.String()
}
// flatten returns a list of directly contained fields in the preorder
// traversal of the type tree of t. The resulting elements are all
// scalars (basic types or pointerlike types), except for struct/array
// "identity" nodes, whose type is that of the aggregate.
//
// reflect.Value is considered pointerlike, similar to interface{}.
//
// Callers must not mutate the result.
//
func (a *analysis) flatten(t types.Type) []*fieldInfo {
fl, ok := a.flattenMemo[t]
if !ok {
switch t := t.(type) {
case *types.Named:
u := t.Underlying()
if isInterface(u) {
// Debuggability hack: don't remove
// the named type from interfaces as
// they're very verbose.
fl = append(fl, &fieldInfo{typ: t})
} else {
fl = a.flatten(u)
}
case *types.Basic,
*types.Signature,
*types.Chan,
*types.Map,
*types.Interface,
*types.Slice,
*types.Pointer:
fl = append(fl, &fieldInfo{typ: t})
case *types.Array:
fl = append(fl, &fieldInfo{typ: t}) // identity node
for _, fi := range a.flatten(t.Elem()) {
fl = append(fl, &fieldInfo{typ: fi.typ, op: true, tail: fi})
}
case *types.Struct:
fl = append(fl, &fieldInfo{typ: t}) // identity node
for i, n := 0, t.NumFields(); i < n; i++ {
f := t.Field(i)
for _, fi := range a.flatten(f.Type()) {
fl = append(fl, &fieldInfo{typ: fi.typ, op: f, tail: fi})
}
}
case *types.Tuple:
// No identity node: tuples are never address-taken.
for i, n := 0, t.Len(); i < n; i++ {
f := t.At(i)
for _, fi := range a.flatten(f.Type()) {
fl = append(fl, &fieldInfo{typ: fi.typ, op: i, tail: fi})
}
}
case *types.Builtin:
panic("flatten(*types.Builtin)") // not the type of any value
default:
panic(t)
}
a.flattenMemo[t] = fl
}
return fl
}
// sizeof returns the number of pointerlike abstractions (nodes) in the type t.
func (a *analysis) sizeof(t types.Type) uint32 {
return uint32(len(a.flatten(t)))
}
// offsetOf returns the (abstract) offset of field index within struct
// or tuple typ.
func (a *analysis) offsetOf(typ types.Type, index int) uint32 {
var offset uint32
switch t := typ.Underlying().(type) {
case *types.Tuple:
for i := 0; i < index; i++ {
offset += a.sizeof(t.At(i).Type())
}
case *types.Struct:
offset++ // the node for the struct itself
for i := 0; i < index; i++ {
offset += a.sizeof(t.Field(i).Type())
}
default:
panic(fmt.Sprintf("offsetOf(%s : %T)", typ, typ))
}
return offset
}
// sliceToArray returns the type representing the arrays to which
// slice type slice points.
func sliceToArray(slice types.Type) *types.Array {
return types.NewArray(slice.Underlying().(*types.Slice).Elem(), 1)
}
// Node set -------------------------------------------------------------------
// NB, mutator methods are attached to *nodeset.
// nodeset may be a reference, but its address matters!
type nodeset map[nodeid]struct{}
// ---- Accessors ----
func (ns nodeset) String() string {
var buf bytes.Buffer
buf.WriteRune('{')
var sep string
for n := range ns {
fmt.Fprintf(&buf, "%sn%d", sep, n)
sep = ", "
}
buf.WriteRune('}')
return buf.String()
}
// diff returns the set-difference x - y. nil => empty.
//
// TODO(adonovan): opt: extremely inefficient. BDDs do this in
// constant time. Sparse bitvectors are linear but very fast.
func (x nodeset) diff(y nodeset) nodeset {
var z nodeset
for k := range x {
if _, ok := y[k]; !ok {
z.add(k)
}
}
return z
}
// clone() returns an unaliased copy of x.
func (x nodeset) clone() nodeset {
return x.diff(nil)
}
// ---- Mutators ----
func (ns *nodeset) add(n nodeid) bool {
sz := len(*ns)
if *ns == nil {
*ns = make(nodeset)
}
(*ns)[n] = struct{}{}
return len(*ns) > sz
}
func (x *nodeset) addAll(y nodeset) bool {
if y == nil {
return false
}
sz := len(*x)
if *x == nil {
*x = make(nodeset)
}
for n := range y {
(*x)[n] = struct{}{}
}
return len(*x) > sz
}
// Constraint set -------------------------------------------------------------
type constraintset map[constraint]struct{}
func (cs *constraintset) add(c constraint) bool {
sz := len(*cs)
if *cs == nil {
*cs = make(constraintset)
}
(*cs)[c] = struct{}{}
return len(*cs) > sz
}
// Worklist -------------------------------------------------------------------
const empty nodeid = 1<<32 - 1
type worklist interface {
add(nodeid) // Adds a node to the set
take() nodeid // Takes a node from the set and returns it, or empty
}
// Simple nondeterministic worklist based on a built-in map.
type mapWorklist struct {
set nodeset
}
func (w *mapWorklist) add(n nodeid) {
w.set[n] = struct{}{}
}
func (w *mapWorklist) take() nodeid {
for k := range w.set {
delete(w.set, k)
return k
}
return empty
}
func makeMapWorklist() worklist {
return &mapWorklist{make(nodeset)}
}