1
0
mirror of https://github.com/golang/go synced 2024-10-01 09:28:37 -06:00
go/src/image/geom.go
Nigel Tao 3a20928157 image: fix the overlap check in Rectangle.Intersect.
This is a re-roll of a previous commit,
a855da29db, which was rolled back in
14347ee480.

It was rolled back because it broke a unit test in image/gif. The
image/gif code was fixed by 9ef65dbe06
"image/gif: fix frame-inside-image bounds checking".

The original commit message:

image: fix the overlap check in Rectangle.Intersect.

The doc comment for Rectangle.Intersect clearly states, "If the two
rectangles do not overlap then the zero rectangle will be returned."
Prior to this fix, calling Intersect on adjacent but non-overlapping
rectangles would return an empty but non-zero rectangle.

The fix essentially changes
if r.Min.X > r.Max.X || r.Min.Y > r.Max.Y { etc }
to
if r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y { etc }
(note that the > signs have become >= signs), but changing that line to:
if r.Empty() { etc }
seems clearer (and equivalent).

Change-Id: I2e3af1f1686064a573b2e513b39246fe60c03631
Reviewed-on: https://go-review.googlesource.com/36734
Reviewed-by: Rob Pike <r@golang.org>
Run-TryBot: Nigel Tao <nigeltao@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2017-02-10 05:05:59 +00:00

271 lines
6.2 KiB
Go

// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package image
import (
"image/color"
"strconv"
)
// A Point is an X, Y coordinate pair. The axes increase right and down.
type Point struct {
X, Y int
}
// String returns a string representation of p like "(3,4)".
func (p Point) String() string {
return "(" + strconv.Itoa(p.X) + "," + strconv.Itoa(p.Y) + ")"
}
// Add returns the vector p+q.
func (p Point) Add(q Point) Point {
return Point{p.X + q.X, p.Y + q.Y}
}
// Sub returns the vector p-q.
func (p Point) Sub(q Point) Point {
return Point{p.X - q.X, p.Y - q.Y}
}
// Mul returns the vector p*k.
func (p Point) Mul(k int) Point {
return Point{p.X * k, p.Y * k}
}
// Div returns the vector p/k.
func (p Point) Div(k int) Point {
return Point{p.X / k, p.Y / k}
}
// In reports whether p is in r.
func (p Point) In(r Rectangle) bool {
return r.Min.X <= p.X && p.X < r.Max.X &&
r.Min.Y <= p.Y && p.Y < r.Max.Y
}
// Mod returns the point q in r such that p.X-q.X is a multiple of r's width
// and p.Y-q.Y is a multiple of r's height.
func (p Point) Mod(r Rectangle) Point {
w, h := r.Dx(), r.Dy()
p = p.Sub(r.Min)
p.X = p.X % w
if p.X < 0 {
p.X += w
}
p.Y = p.Y % h
if p.Y < 0 {
p.Y += h
}
return p.Add(r.Min)
}
// Eq reports whether p and q are equal.
func (p Point) Eq(q Point) bool {
return p == q
}
// ZP is the zero Point.
var ZP Point
// Pt is shorthand for Point{X, Y}.
func Pt(X, Y int) Point {
return Point{X, Y}
}
// A Rectangle contains the points with Min.X <= X < Max.X, Min.Y <= Y < Max.Y.
// It is well-formed if Min.X <= Max.X and likewise for Y. Points are always
// well-formed. A rectangle's methods always return well-formed outputs for
// well-formed inputs.
//
// A Rectangle is also an Image whose bounds are the rectangle itself. At
// returns color.Opaque for points in the rectangle and color.Transparent
// otherwise.
type Rectangle struct {
Min, Max Point
}
// String returns a string representation of r like "(3,4)-(6,5)".
func (r Rectangle) String() string {
return r.Min.String() + "-" + r.Max.String()
}
// Dx returns r's width.
func (r Rectangle) Dx() int {
return r.Max.X - r.Min.X
}
// Dy returns r's height.
func (r Rectangle) Dy() int {
return r.Max.Y - r.Min.Y
}
// Size returns r's width and height.
func (r Rectangle) Size() Point {
return Point{
r.Max.X - r.Min.X,
r.Max.Y - r.Min.Y,
}
}
// Add returns the rectangle r translated by p.
func (r Rectangle) Add(p Point) Rectangle {
return Rectangle{
Point{r.Min.X + p.X, r.Min.Y + p.Y},
Point{r.Max.X + p.X, r.Max.Y + p.Y},
}
}
// Sub returns the rectangle r translated by -p.
func (r Rectangle) Sub(p Point) Rectangle {
return Rectangle{
Point{r.Min.X - p.X, r.Min.Y - p.Y},
Point{r.Max.X - p.X, r.Max.Y - p.Y},
}
}
// Inset returns the rectangle r inset by n, which may be negative. If either
// of r's dimensions is less than 2*n then an empty rectangle near the center
// of r will be returned.
func (r Rectangle) Inset(n int) Rectangle {
if r.Dx() < 2*n {
r.Min.X = (r.Min.X + r.Max.X) / 2
r.Max.X = r.Min.X
} else {
r.Min.X += n
r.Max.X -= n
}
if r.Dy() < 2*n {
r.Min.Y = (r.Min.Y + r.Max.Y) / 2
r.Max.Y = r.Min.Y
} else {
r.Min.Y += n
r.Max.Y -= n
}
return r
}
// Intersect returns the largest rectangle contained by both r and s. If the
// two rectangles do not overlap then the zero rectangle will be returned.
func (r Rectangle) Intersect(s Rectangle) Rectangle {
if r.Min.X < s.Min.X {
r.Min.X = s.Min.X
}
if r.Min.Y < s.Min.Y {
r.Min.Y = s.Min.Y
}
if r.Max.X > s.Max.X {
r.Max.X = s.Max.X
}
if r.Max.Y > s.Max.Y {
r.Max.Y = s.Max.Y
}
// Letting r0 and s0 be the values of r and s at the time that the method
// is called, this next line is equivalent to:
//
// if max(r0.Min.X, s0.Min.X) >= min(r0.Max.X, s0.Max.X) || likewiseForY { etc }
if r.Empty() {
return ZR
}
return r
}
// Union returns the smallest rectangle that contains both r and s.
func (r Rectangle) Union(s Rectangle) Rectangle {
if r.Empty() {
return s
}
if s.Empty() {
return r
}
if r.Min.X > s.Min.X {
r.Min.X = s.Min.X
}
if r.Min.Y > s.Min.Y {
r.Min.Y = s.Min.Y
}
if r.Max.X < s.Max.X {
r.Max.X = s.Max.X
}
if r.Max.Y < s.Max.Y {
r.Max.Y = s.Max.Y
}
return r
}
// Empty reports whether the rectangle contains no points.
func (r Rectangle) Empty() bool {
return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y
}
// Eq reports whether r and s contain the same set of points. All empty
// rectangles are considered equal.
func (r Rectangle) Eq(s Rectangle) bool {
return r == s || r.Empty() && s.Empty()
}
// Overlaps reports whether r and s have a non-empty intersection.
func (r Rectangle) Overlaps(s Rectangle) bool {
return !r.Empty() && !s.Empty() &&
r.Min.X < s.Max.X && s.Min.X < r.Max.X &&
r.Min.Y < s.Max.Y && s.Min.Y < r.Max.Y
}
// In reports whether every point in r is in s.
func (r Rectangle) In(s Rectangle) bool {
if r.Empty() {
return true
}
// Note that r.Max is an exclusive bound for r, so that r.In(s)
// does not require that r.Max.In(s).
return s.Min.X <= r.Min.X && r.Max.X <= s.Max.X &&
s.Min.Y <= r.Min.Y && r.Max.Y <= s.Max.Y
}
// Canon returns the canonical version of r. The returned rectangle has minimum
// and maximum coordinates swapped if necessary so that it is well-formed.
func (r Rectangle) Canon() Rectangle {
if r.Max.X < r.Min.X {
r.Min.X, r.Max.X = r.Max.X, r.Min.X
}
if r.Max.Y < r.Min.Y {
r.Min.Y, r.Max.Y = r.Max.Y, r.Min.Y
}
return r
}
// At implements the Image interface.
func (r Rectangle) At(x, y int) color.Color {
if (Point{x, y}).In(r) {
return color.Opaque
}
return color.Transparent
}
// Bounds implements the Image interface.
func (r Rectangle) Bounds() Rectangle {
return r
}
// ColorModel implements the Image interface.
func (r Rectangle) ColorModel() color.Model {
return color.Alpha16Model
}
// ZR is the zero Rectangle.
var ZR Rectangle
// Rect is shorthand for Rectangle{Pt(x0, y0), Pt(x1, y1)}. The returned
// rectangle has minimum and maximum coordinates swapped if necessary so that
// it is well-formed.
func Rect(x0, y0, x1, y1 int) Rectangle {
if x0 > x1 {
x0, x1 = x1, x0
}
if y0 > y1 {
y0, y1 = y1, y0
}
return Rectangle{Point{x0, y0}, Point{x1, y1}}
}