1
0
mirror of https://github.com/golang/go synced 2024-10-03 11:11:22 -06:00
go/src/runtime/traceback.go
Russ Cox 181e26b9fa runtime: replace func-based write barrier skipping with type-based
This CL revises CL 7504 to use explicitly uintptr types for the
struct fields that are going to be updated sometimes without
write barriers. The result is that the fields are now updated *always*
without write barriers.

This approach has two important properties:

1) Now the GC never looks at the field, so if the missing reference
could cause a problem, it will do so all the time, not just when the
write barrier is missed at just the right moment.

2) Now a write barrier never happens for the field, avoiding the
(correct) detection of inconsistent write barriers when GODEBUG=wbshadow=1.

Change-Id: Iebd3962c727c0046495cc08914a8dc0808460e0e
Reviewed-on: https://go-review.googlesource.com/9019
Reviewed-by: Austin Clements <austin@google.com>
Run-TryBot: Russ Cox <rsc@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2015-04-20 20:20:09 +00:00

659 lines
21 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
// The code in this file implements stack trace walking for all architectures.
// The most important fact about a given architecture is whether it uses a link register.
// On systems with link registers, the prologue for a non-leaf function stores the
// incoming value of LR at the bottom of the newly allocated stack frame.
// On systems without link registers, the architecture pushes a return PC during
// the call instruction, so the return PC ends up above the stack frame.
// In this file, the return PC is always called LR, no matter how it was found.
//
// To date, the opposite of a link register architecture is an x86 architecture.
// This code may need to change if some other kind of non-link-register
// architecture comes along.
//
// The other important fact is the size of a pointer: on 32-bit systems the LR
// takes up only 4 bytes on the stack, while on 64-bit systems it takes up 8 bytes.
// Typically this is ptrSize.
//
// As an exception, amd64p32 has ptrSize == 4 but the CALL instruction still
// stores an 8-byte return PC onto the stack. To accommodate this, we use regSize
// as the size of the architecture-pushed return PC.
//
// usesLR is defined below. ptrSize and regSize are defined in stubs.go.
const usesLR = GOARCH != "amd64" && GOARCH != "amd64p32" && GOARCH != "386"
var (
// initialized in tracebackinit
goexitPC uintptr
jmpdeferPC uintptr
mcallPC uintptr
morestackPC uintptr
mstartPC uintptr
rt0_goPC uintptr
sigpanicPC uintptr
runfinqPC uintptr
backgroundgcPC uintptr
bgsweepPC uintptr
forcegchelperPC uintptr
timerprocPC uintptr
systemstack_switchPC uintptr
externalthreadhandlerp uintptr // initialized elsewhere
)
func tracebackinit() {
// Go variable initialization happens late during runtime startup.
// Instead of initializing the variables above in the declarations,
// schedinit calls this function so that the variables are
// initialized and available earlier in the startup sequence.
goexitPC = funcPC(goexit)
jmpdeferPC = funcPC(jmpdefer)
mcallPC = funcPC(mcall)
morestackPC = funcPC(morestack)
mstartPC = funcPC(mstart)
rt0_goPC = funcPC(rt0_go)
sigpanicPC = funcPC(sigpanic)
runfinqPC = funcPC(runfinq)
backgroundgcPC = funcPC(backgroundgc)
bgsweepPC = funcPC(bgsweep)
forcegchelperPC = funcPC(forcegchelper)
timerprocPC = funcPC(timerproc)
systemstack_switchPC = funcPC(systemstack_switch)
}
// Traceback over the deferred function calls.
// Report them like calls that have been invoked but not started executing yet.
func tracebackdefers(gp *g, callback func(*stkframe, unsafe.Pointer) bool, v unsafe.Pointer) {
var frame stkframe
for d := gp._defer; d != nil; d = d.link {
fn := d.fn
if fn == nil {
// Defer of nil function. Args don't matter.
frame.pc = 0
frame.fn = nil
frame.argp = 0
frame.arglen = 0
frame.argmap = nil
} else {
frame.pc = uintptr(fn.fn)
f := findfunc(frame.pc)
if f == nil {
print("runtime: unknown pc in defer ", hex(frame.pc), "\n")
throw("unknown pc")
}
frame.fn = f
frame.argp = uintptr(deferArgs(d))
setArgInfo(&frame, f, true)
}
frame.continpc = frame.pc
if !callback((*stkframe)(noescape(unsafe.Pointer(&frame))), v) {
return
}
}
}
// Generic traceback. Handles runtime stack prints (pcbuf == nil),
// the runtime.Callers function (pcbuf != nil), as well as the garbage
// collector (callback != nil). A little clunky to merge these, but avoids
// duplicating the code and all its subtlety.
func gentraceback(pc0, sp0, lr0 uintptr, gp *g, skip int, pcbuf *uintptr, max int, callback func(*stkframe, unsafe.Pointer) bool, v unsafe.Pointer, flags uint) int {
if goexitPC == 0 {
throw("gentraceback before goexitPC initialization")
}
g := getg()
if g == gp && g == g.m.curg {
// The starting sp has been passed in as a uintptr, and the caller may
// have other uintptr-typed stack references as well.
// If during one of the calls that got us here or during one of the
// callbacks below the stack must be grown, all these uintptr references
// to the stack will not be updated, and gentraceback will continue
// to inspect the old stack memory, which may no longer be valid.
// Even if all the variables were updated correctly, it is not clear that
// we want to expose a traceback that begins on one stack and ends
// on another stack. That could confuse callers quite a bit.
// Instead, we require that gentraceback and any other function that
// accepts an sp for the current goroutine (typically obtained by
// calling getcallersp) must not run on that goroutine's stack but
// instead on the g0 stack.
throw("gentraceback cannot trace user goroutine on its own stack")
}
gotraceback := gotraceback(nil)
if pc0 == ^uintptr(0) && sp0 == ^uintptr(0) { // Signal to fetch saved values from gp.
if gp.syscallsp != 0 {
pc0 = gp.syscallpc
sp0 = gp.syscallsp
if usesLR {
lr0 = 0
}
} else {
pc0 = gp.sched.pc
sp0 = gp.sched.sp
if usesLR {
lr0 = gp.sched.lr
}
}
}
nprint := 0
var frame stkframe
frame.pc = pc0
frame.sp = sp0
if usesLR {
frame.lr = lr0
}
waspanic := false
printing := pcbuf == nil && callback == nil
_defer := gp._defer
for _defer != nil && uintptr(_defer.sp) == _NoArgs {
_defer = _defer.link
}
// If the PC is zero, it's likely a nil function call.
// Start in the caller's frame.
if frame.pc == 0 {
if usesLR {
frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp))
frame.lr = 0
} else {
frame.pc = uintptr(*(*uintreg)(unsafe.Pointer(frame.sp)))
frame.sp += regSize
}
}
f := findfunc(frame.pc)
if f == nil {
if callback != nil {
print("runtime: unknown pc ", hex(frame.pc), "\n")
throw("unknown pc")
}
return 0
}
frame.fn = f
n := 0
for n < max {
// Typically:
// pc is the PC of the running function.
// sp is the stack pointer at that program counter.
// fp is the frame pointer (caller's stack pointer) at that program counter, or nil if unknown.
// stk is the stack containing sp.
// The caller's program counter is lr, unless lr is zero, in which case it is *(uintptr*)sp.
f = frame.fn
// Found an actual function.
// Derive frame pointer and link register.
if frame.fp == 0 {
frame.fp = frame.sp + uintptr(funcspdelta(f, frame.pc))
if !usesLR {
// On x86, call instruction pushes return PC before entering new function.
frame.fp += regSize
}
}
var flr *_func
if topofstack(f) {
frame.lr = 0
flr = nil
} else if usesLR && f.entry == jmpdeferPC {
// jmpdefer modifies SP/LR/PC non-atomically.
// If a profiling interrupt arrives during jmpdefer,
// the stack unwind may see a mismatched register set
// and get confused. Stop if we see PC within jmpdefer
// to avoid that confusion.
// See golang.org/issue/8153.
if callback != nil {
throw("traceback_arm: found jmpdefer when tracing with callback")
}
frame.lr = 0
} else {
if usesLR {
if n == 0 && frame.sp < frame.fp || frame.lr == 0 {
frame.lr = *(*uintptr)(unsafe.Pointer(frame.sp))
}
} else {
if frame.lr == 0 {
frame.lr = uintptr(*(*uintreg)(unsafe.Pointer(frame.fp - regSize)))
}
}
flr = findfunc(frame.lr)
if flr == nil {
// This happens if you get a profiling interrupt at just the wrong time.
// In that context it is okay to stop early.
// But if callback is set, we're doing a garbage collection and must
// get everything, so crash loudly.
if callback != nil {
print("runtime: unexpected return pc for ", funcname(f), " called from ", hex(frame.lr), "\n")
throw("unknown caller pc")
}
}
}
frame.varp = frame.fp
if !usesLR {
// On x86, call instruction pushes return PC before entering new function.
frame.varp -= regSize
}
// If framepointer_enabled and there's a frame, then
// there's a saved bp here.
if framepointer_enabled && GOARCH == "amd64" && frame.varp > frame.sp {
frame.varp -= regSize
}
// Derive size of arguments.
// Most functions have a fixed-size argument block,
// so we can use metadata about the function f.
// Not all, though: there are some variadic functions
// in package runtime and reflect, and for those we use call-specific
// metadata recorded by f's caller.
if callback != nil || printing {
frame.argp = frame.fp
if usesLR {
frame.argp += ptrSize
}
setArgInfo(&frame, f, callback != nil)
}
// Determine frame's 'continuation PC', where it can continue.
// Normally this is the return address on the stack, but if sigpanic
// is immediately below this function on the stack, then the frame
// stopped executing due to a trap, and frame.pc is probably not
// a safe point for looking up liveness information. In this panicking case,
// the function either doesn't return at all (if it has no defers or if the
// defers do not recover) or it returns from one of the calls to
// deferproc a second time (if the corresponding deferred func recovers).
// It suffices to assume that the most recent deferproc is the one that
// returns; everything live at earlier deferprocs is still live at that one.
frame.continpc = frame.pc
if waspanic {
if _defer != nil && _defer.sp == frame.sp {
frame.continpc = _defer.pc
} else {
frame.continpc = 0
}
}
// Unwind our local defer stack past this frame.
for _defer != nil && (_defer.sp == frame.sp || _defer.sp == _NoArgs) {
_defer = _defer.link
}
if skip > 0 {
skip--
goto skipped
}
if pcbuf != nil {
(*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = frame.pc
}
if callback != nil {
if !callback((*stkframe)(noescape(unsafe.Pointer(&frame))), v) {
return n
}
}
if printing {
if (flags&_TraceRuntimeFrames) != 0 || showframe(f, gp) {
// Print during crash.
// main(0x1, 0x2, 0x3)
// /home/rsc/go/src/runtime/x.go:23 +0xf
//
tracepc := frame.pc // back up to CALL instruction for funcline.
if (n > 0 || flags&_TraceTrap == 0) && frame.pc > f.entry && !waspanic {
tracepc--
}
print(funcname(f), "(")
argp := (*[100]uintptr)(unsafe.Pointer(frame.argp))
for i := uintptr(0); i < frame.arglen/ptrSize; i++ {
if i >= 10 {
print(", ...")
break
}
if i != 0 {
print(", ")
}
print(hex(argp[i]))
}
print(")\n")
file, line := funcline(f, tracepc)
print("\t", file, ":", line)
if frame.pc > f.entry {
print(" +", hex(frame.pc-f.entry))
}
if g.m.throwing > 0 && gp == g.m.curg || gotraceback >= 2 {
print(" fp=", hex(frame.fp), " sp=", hex(frame.sp))
}
print("\n")
nprint++
}
}
n++
skipped:
waspanic = f.entry == sigpanicPC
// Do not unwind past the bottom of the stack.
if flr == nil {
break
}
// Unwind to next frame.
frame.fn = flr
frame.pc = frame.lr
frame.lr = 0
frame.sp = frame.fp
frame.fp = 0
frame.argmap = nil
// On link register architectures, sighandler saves the LR on stack
// before faking a call to sigpanic.
if usesLR && waspanic {
x := *(*uintptr)(unsafe.Pointer(frame.sp))
frame.sp += ptrSize
if GOARCH == "arm64" {
// arm64 needs 16-byte aligned SP, always
frame.sp += ptrSize
}
f = findfunc(frame.pc)
frame.fn = f
if f == nil {
frame.pc = x
} else if funcspdelta(f, frame.pc) == 0 {
frame.lr = x
}
}
}
if printing {
n = nprint
}
// If callback != nil, we're being called to gather stack information during
// garbage collection or stack growth. In that context, require that we used
// up the entire defer stack. If not, then there is a bug somewhere and the
// garbage collection or stack growth may not have seen the correct picture
// of the stack. Crash now instead of silently executing the garbage collection
// or stack copy incorrectly and setting up for a mysterious crash later.
//
// Note that panic != nil is okay here: there can be leftover panics,
// because the defers on the panic stack do not nest in frame order as
// they do on the defer stack. If you have:
//
// frame 1 defers d1
// frame 2 defers d2
// frame 3 defers d3
// frame 4 panics
// frame 4's panic starts running defers
// frame 5, running d3, defers d4
// frame 5 panics
// frame 5's panic starts running defers
// frame 6, running d4, garbage collects
// frame 6, running d2, garbage collects
//
// During the execution of d4, the panic stack is d4 -> d3, which
// is nested properly, and we'll treat frame 3 as resumable, because we
// can find d3. (And in fact frame 3 is resumable. If d4 recovers
// and frame 5 continues running, d3, d3 can recover and we'll
// resume execution in (returning from) frame 3.)
//
// During the execution of d2, however, the panic stack is d2 -> d3,
// which is inverted. The scan will match d2 to frame 2 but having
// d2 on the stack until then means it will not match d3 to frame 3.
// This is okay: if we're running d2, then all the defers after d2 have
// completed and their corresponding frames are dead. Not finding d3
// for frame 3 means we'll set frame 3's continpc == 0, which is correct
// (frame 3 is dead). At the end of the walk the panic stack can thus
// contain defers (d3 in this case) for dead frames. The inversion here
// always indicates a dead frame, and the effect of the inversion on the
// scan is to hide those dead frames, so the scan is still okay:
// what's left on the panic stack are exactly (and only) the dead frames.
//
// We require callback != nil here because only when callback != nil
// do we know that gentraceback is being called in a "must be correct"
// context as opposed to a "best effort" context. The tracebacks with
// callbacks only happen when everything is stopped nicely.
// At other times, such as when gathering a stack for a profiling signal
// or when printing a traceback during a crash, everything may not be
// stopped nicely, and the stack walk may not be able to complete.
// It's okay in those situations not to use up the entire defer stack:
// incomplete information then is still better than nothing.
if callback != nil && n < max && _defer != nil {
if _defer != nil {
print("runtime: g", gp.goid, ": leftover defer sp=", hex(_defer.sp), " pc=", hex(_defer.pc), "\n")
}
for _defer = gp._defer; _defer != nil; _defer = _defer.link {
print("\tdefer ", _defer, " sp=", hex(_defer.sp), " pc=", hex(_defer.pc), "\n")
}
throw("traceback has leftover defers")
}
return n
}
func setArgInfo(frame *stkframe, f *_func, needArgMap bool) {
frame.arglen = uintptr(f.args)
if needArgMap && f.args == _ArgsSizeUnknown {
// Extract argument bitmaps for reflect stubs from the calls they made to reflect.
switch funcname(f) {
case "reflect.makeFuncStub", "reflect.methodValueCall":
arg0 := frame.sp
if usesLR {
arg0 += ptrSize
}
fn := *(**[2]uintptr)(unsafe.Pointer(arg0))
if fn[0] != f.entry {
print("runtime: confused by ", funcname(f), "\n")
throw("reflect mismatch")
}
bv := (*bitvector)(unsafe.Pointer(fn[1]))
frame.arglen = uintptr(bv.n / 2 * ptrSize)
frame.argmap = bv
}
}
}
func printcreatedby(gp *g) {
// Show what created goroutine, except main goroutine (goid 1).
pc := gp.gopc
f := findfunc(pc)
if f != nil && showframe(f, gp) && gp.goid != 1 {
print("created by ", funcname(f), "\n")
tracepc := pc // back up to CALL instruction for funcline.
if pc > f.entry {
tracepc -= _PCQuantum
}
file, line := funcline(f, tracepc)
print("\t", file, ":", line)
if pc > f.entry {
print(" +", hex(pc-f.entry))
}
print("\n")
}
}
func traceback(pc, sp, lr uintptr, gp *g) {
traceback1(pc, sp, lr, gp, 0)
}
// tracebacktrap is like traceback but expects that the PC and SP were obtained
// from a trap, not from gp->sched or gp->syscallpc/gp->syscallsp or getcallerpc/getcallersp.
// Because they are from a trap instead of from a saved pair,
// the initial PC must not be rewound to the previous instruction.
// (All the saved pairs record a PC that is a return address, so we
// rewind it into the CALL instruction.)
func tracebacktrap(pc, sp, lr uintptr, gp *g) {
traceback1(pc, sp, lr, gp, _TraceTrap)
}
func traceback1(pc, sp, lr uintptr, gp *g, flags uint) {
var n int
if readgstatus(gp)&^_Gscan == _Gsyscall {
// Override registers if blocked in system call.
pc = gp.syscallpc
sp = gp.syscallsp
flags &^= _TraceTrap
}
// Print traceback. By default, omits runtime frames.
// If that means we print nothing at all, repeat forcing all frames printed.
n = gentraceback(pc, sp, lr, gp, 0, nil, _TracebackMaxFrames, nil, nil, flags)
if n == 0 && (flags&_TraceRuntimeFrames) == 0 {
n = gentraceback(pc, sp, lr, gp, 0, nil, _TracebackMaxFrames, nil, nil, flags|_TraceRuntimeFrames)
}
if n == _TracebackMaxFrames {
print("...additional frames elided...\n")
}
printcreatedby(gp)
}
func callers(skip int, pcbuf []uintptr) int {
sp := getcallersp(unsafe.Pointer(&skip))
pc := uintptr(getcallerpc(unsafe.Pointer(&skip)))
var n int
systemstack(func() {
n = gentraceback(pc, sp, 0, getg(), skip, &pcbuf[0], len(pcbuf), nil, nil, 0)
})
return n
}
func gcallers(gp *g, skip int, pcbuf []uintptr) int {
return gentraceback(^uintptr(0), ^uintptr(0), 0, gp, skip, &pcbuf[0], len(pcbuf), nil, nil, 0)
}
func showframe(f *_func, gp *g) bool {
g := getg()
if g.m.throwing > 0 && gp != nil && (gp == g.m.curg || gp == g.m.caughtsig.ptr()) {
return true
}
traceback := gotraceback(nil)
name := funcname(f)
// Special case: always show runtime.panic frame, so that we can
// see where a panic started in the middle of a stack trace.
// See golang.org/issue/5832.
if name == "runtime.panic" {
return true
}
return traceback > 1 || f != nil && contains(name, ".") && (!hasprefix(name, "runtime.") || isExportedRuntime(name))
}
// isExportedRuntime reports whether name is an exported runtime function.
// It is only for runtime functions, so ASCII A-Z is fine.
func isExportedRuntime(name string) bool {
const n = len("runtime.")
return len(name) > n && name[:n] == "runtime." && 'A' <= name[n] && name[n] <= 'Z'
}
var gStatusStrings = [...]string{
_Gidle: "idle",
_Grunnable: "runnable",
_Grunning: "running",
_Gsyscall: "syscall",
_Gwaiting: "waiting",
_Gdead: "dead",
_Genqueue: "enqueue",
_Gcopystack: "copystack",
}
var gScanStatusStrings = [...]string{
0: "scan",
_Grunnable: "scanrunnable",
_Grunning: "scanrunning",
_Gsyscall: "scansyscall",
_Gwaiting: "scanwaiting",
_Gdead: "scandead",
_Genqueue: "scanenqueue",
}
func goroutineheader(gp *g) {
gpstatus := readgstatus(gp)
// Basic string status
var status string
if 0 <= gpstatus && gpstatus < uint32(len(gStatusStrings)) {
status = gStatusStrings[gpstatus]
} else if gpstatus&_Gscan != 0 && 0 <= gpstatus&^_Gscan && gpstatus&^_Gscan < uint32(len(gStatusStrings)) {
status = gStatusStrings[gpstatus&^_Gscan]
} else {
status = "???"
}
// Override.
if (gpstatus == _Gwaiting || gpstatus == _Gscanwaiting) && gp.waitreason != "" {
status = gp.waitreason
}
// approx time the G is blocked, in minutes
var waitfor int64
gpstatus &^= _Gscan // drop the scan bit
if (gpstatus == _Gwaiting || gpstatus == _Gsyscall) && gp.waitsince != 0 {
waitfor = (nanotime() - gp.waitsince) / 60e9
}
print("goroutine ", gp.goid, " [", status)
if waitfor >= 1 {
print(", ", waitfor, " minutes")
}
if gp.lockedm != nil {
print(", locked to thread")
}
print("]:\n")
}
func tracebackothers(me *g) {
level := gotraceback(nil)
// Show the current goroutine first, if we haven't already.
g := getg()
gp := g.m.curg
if gp != nil && gp != me {
print("\n")
goroutineheader(gp)
traceback(^uintptr(0), ^uintptr(0), 0, gp)
}
lock(&allglock)
for _, gp := range allgs {
if gp == me || gp == g.m.curg || readgstatus(gp) == _Gdead || isSystemGoroutine(gp) && level < 2 {
continue
}
print("\n")
goroutineheader(gp)
if readgstatus(gp)&^_Gscan == _Grunning {
print("\tgoroutine running on other thread; stack unavailable\n")
printcreatedby(gp)
} else {
traceback(^uintptr(0), ^uintptr(0), 0, gp)
}
}
unlock(&allglock)
}
// Does f mark the top of a goroutine stack?
func topofstack(f *_func) bool {
pc := f.entry
return pc == goexitPC ||
pc == mstartPC ||
pc == mcallPC ||
pc == morestackPC ||
pc == rt0_goPC ||
externalthreadhandlerp != 0 && pc == externalthreadhandlerp
}
// isSystemGoroutine reports whether the goroutine g must be omitted in
// stack dumps and deadlock detector.
func isSystemGoroutine(gp *g) bool {
pc := gp.startpc
return pc == runfinqPC && !fingRunning ||
pc == backgroundgcPC ||
pc == bgsweepPC ||
pc == forcegchelperPC ||
pc == timerprocPC
}