mirror of
https://github.com/golang/go
synced 2024-11-19 23:14:47 -07:00
5fea2ccc77
The tree's pretty inconsistent about single space vs double space after a period in documentation. Make it consistently a single space, per earlier decisions. This means contributors won't be confused by misleading precedence. This CL doesn't use go/doc to parse. It only addresses // comments. It was generated with: $ perl -i -npe 's,^(\s*// .+[a-z]\.) +([A-Z]),$1 $2,' $(git grep -l -E '^\s*//(.+\.) +([A-Z])') $ go test go/doc -update Change-Id: Iccdb99c37c797ef1f804a94b22ba5ee4b500c4f7 Reviewed-on: https://go-review.googlesource.com/20022 Reviewed-by: Rob Pike <r@golang.org> Reviewed-by: Dave Day <djd@golang.org> Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org>
223 lines
7.0 KiB
Go
223 lines
7.0 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
const (
|
|
_PAGE_SIZE = sys.PhysPageSize
|
|
_EACCES = 13
|
|
)
|
|
|
|
// NOTE: vec must be just 1 byte long here.
|
|
// Mincore returns ENOMEM if any of the pages are unmapped,
|
|
// but we want to know that all of the pages are unmapped.
|
|
// To make these the same, we can only ask about one page
|
|
// at a time. See golang.org/issue/7476.
|
|
var addrspace_vec [1]byte
|
|
|
|
func addrspace_free(v unsafe.Pointer, n uintptr) bool {
|
|
var chunk uintptr
|
|
for off := uintptr(0); off < n; off += chunk {
|
|
chunk = _PAGE_SIZE * uintptr(len(addrspace_vec))
|
|
if chunk > (n - off) {
|
|
chunk = n - off
|
|
}
|
|
errval := mincore(unsafe.Pointer(uintptr(v)+off), chunk, &addrspace_vec[0])
|
|
// ENOMEM means unmapped, which is what we want.
|
|
// Anything else we assume means the pages are mapped.
|
|
if errval != -_ENOMEM {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
func mmap_fixed(v unsafe.Pointer, n uintptr, prot, flags, fd int32, offset uint32) unsafe.Pointer {
|
|
p := mmap(v, n, prot, flags, fd, offset)
|
|
// On some systems, mmap ignores v without
|
|
// MAP_FIXED, so retry if the address space is free.
|
|
if p != v && addrspace_free(v, n) {
|
|
if uintptr(p) > 4096 {
|
|
munmap(p, n)
|
|
}
|
|
p = mmap(v, n, prot, flags|_MAP_FIXED, fd, offset)
|
|
}
|
|
return p
|
|
}
|
|
|
|
// Don't split the stack as this method may be invoked without a valid G, which
|
|
// prevents us from allocating more stack.
|
|
//go:nosplit
|
|
func sysAlloc(n uintptr, sysStat *uint64) unsafe.Pointer {
|
|
p := mmap(nil, n, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, -1, 0)
|
|
if uintptr(p) < 4096 {
|
|
if uintptr(p) == _EACCES {
|
|
print("runtime: mmap: access denied\n")
|
|
exit(2)
|
|
}
|
|
if uintptr(p) == _EAGAIN {
|
|
print("runtime: mmap: too much locked memory (check 'ulimit -l').\n")
|
|
exit(2)
|
|
}
|
|
return nil
|
|
}
|
|
mSysStatInc(sysStat, n)
|
|
return p
|
|
}
|
|
|
|
func sysUnused(v unsafe.Pointer, n uintptr) {
|
|
// By default, Linux's "transparent huge page" support will
|
|
// merge pages into a huge page if there's even a single
|
|
// present regular page, undoing the effects of the DONTNEED
|
|
// below. On amd64, that means khugepaged can turn a single
|
|
// 4KB page to 2MB, bloating the process's RSS by as much as
|
|
// 512X. (See issue #8832 and Linux kernel bug
|
|
// https://bugzilla.kernel.org/show_bug.cgi?id=93111)
|
|
//
|
|
// To work around this, we explicitly disable transparent huge
|
|
// pages when we release pages of the heap. However, we have
|
|
// to do this carefully because changing this flag tends to
|
|
// split the VMA (memory mapping) containing v in to three
|
|
// VMAs in order to track the different values of the
|
|
// MADV_NOHUGEPAGE flag in the different regions. There's a
|
|
// default limit of 65530 VMAs per address space (sysctl
|
|
// vm.max_map_count), so we must be careful not to create too
|
|
// many VMAs (see issue #12233).
|
|
//
|
|
// Since huge pages are huge, there's little use in adjusting
|
|
// the MADV_NOHUGEPAGE flag on a fine granularity, so we avoid
|
|
// exploding the number of VMAs by only adjusting the
|
|
// MADV_NOHUGEPAGE flag on a large granularity. This still
|
|
// gets most of the benefit of huge pages while keeping the
|
|
// number of VMAs under control. With hugePageSize = 2MB, even
|
|
// a pessimal heap can reach 128GB before running out of VMAs.
|
|
if sys.HugePageSize != 0 {
|
|
var s uintptr = sys.HugePageSize // division by constant 0 is a compile-time error :(
|
|
|
|
// If it's a large allocation, we want to leave huge
|
|
// pages enabled. Hence, we only adjust the huge page
|
|
// flag on the huge pages containing v and v+n-1, and
|
|
// only if those aren't aligned.
|
|
var head, tail uintptr
|
|
if uintptr(v)%s != 0 {
|
|
// Compute huge page containing v.
|
|
head = uintptr(v) &^ (s - 1)
|
|
}
|
|
if (uintptr(v)+n)%s != 0 {
|
|
// Compute huge page containing v+n-1.
|
|
tail = (uintptr(v) + n - 1) &^ (s - 1)
|
|
}
|
|
|
|
// Note that madvise will return EINVAL if the flag is
|
|
// already set, which is quite likely. We ignore
|
|
// errors.
|
|
if head != 0 && head+sys.HugePageSize == tail {
|
|
// head and tail are different but adjacent,
|
|
// so do this in one call.
|
|
madvise(unsafe.Pointer(head), 2*sys.HugePageSize, _MADV_NOHUGEPAGE)
|
|
} else {
|
|
// Advise the huge pages containing v and v+n-1.
|
|
if head != 0 {
|
|
madvise(unsafe.Pointer(head), sys.HugePageSize, _MADV_NOHUGEPAGE)
|
|
}
|
|
if tail != 0 && tail != head {
|
|
madvise(unsafe.Pointer(tail), sys.HugePageSize, _MADV_NOHUGEPAGE)
|
|
}
|
|
}
|
|
}
|
|
|
|
madvise(v, n, _MADV_DONTNEED)
|
|
}
|
|
|
|
func sysUsed(v unsafe.Pointer, n uintptr) {
|
|
if sys.HugePageSize != 0 {
|
|
// Partially undo the NOHUGEPAGE marks from sysUnused
|
|
// for whole huge pages between v and v+n. This may
|
|
// leave huge pages off at the end points v and v+n
|
|
// even though allocations may cover these entire huge
|
|
// pages. We could detect this and undo NOHUGEPAGE on
|
|
// the end points as well, but it's probably not worth
|
|
// the cost because when neighboring allocations are
|
|
// freed sysUnused will just set NOHUGEPAGE again.
|
|
var s uintptr = sys.HugePageSize
|
|
|
|
// Round v up to a huge page boundary.
|
|
beg := (uintptr(v) + (s - 1)) &^ (s - 1)
|
|
// Round v+n down to a huge page boundary.
|
|
end := (uintptr(v) + n) &^ (s - 1)
|
|
|
|
if beg < end {
|
|
madvise(unsafe.Pointer(beg), end-beg, _MADV_HUGEPAGE)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Don't split the stack as this function may be invoked without a valid G,
|
|
// which prevents us from allocating more stack.
|
|
//go:nosplit
|
|
func sysFree(v unsafe.Pointer, n uintptr, sysStat *uint64) {
|
|
mSysStatDec(sysStat, n)
|
|
munmap(v, n)
|
|
}
|
|
|
|
func sysFault(v unsafe.Pointer, n uintptr) {
|
|
mmap(v, n, _PROT_NONE, _MAP_ANON|_MAP_PRIVATE|_MAP_FIXED, -1, 0)
|
|
}
|
|
|
|
func sysReserve(v unsafe.Pointer, n uintptr, reserved *bool) unsafe.Pointer {
|
|
// On 64-bit, people with ulimit -v set complain if we reserve too
|
|
// much address space. Instead, assume that the reservation is okay
|
|
// if we can reserve at least 64K and check the assumption in SysMap.
|
|
// Only user-mode Linux (UML) rejects these requests.
|
|
if sys.PtrSize == 8 && uint64(n) > 1<<32 {
|
|
p := mmap_fixed(v, 64<<10, _PROT_NONE, _MAP_ANON|_MAP_PRIVATE, -1, 0)
|
|
if p != v {
|
|
if uintptr(p) >= 4096 {
|
|
munmap(p, 64<<10)
|
|
}
|
|
return nil
|
|
}
|
|
munmap(p, 64<<10)
|
|
*reserved = false
|
|
return v
|
|
}
|
|
|
|
p := mmap(v, n, _PROT_NONE, _MAP_ANON|_MAP_PRIVATE, -1, 0)
|
|
if uintptr(p) < 4096 {
|
|
return nil
|
|
}
|
|
*reserved = true
|
|
return p
|
|
}
|
|
|
|
func sysMap(v unsafe.Pointer, n uintptr, reserved bool, sysStat *uint64) {
|
|
mSysStatInc(sysStat, n)
|
|
|
|
// On 64-bit, we don't actually have v reserved, so tread carefully.
|
|
if !reserved {
|
|
p := mmap_fixed(v, n, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, -1, 0)
|
|
if uintptr(p) == _ENOMEM {
|
|
throw("runtime: out of memory")
|
|
}
|
|
if p != v {
|
|
print("runtime: address space conflict: map(", v, ") = ", p, "\n")
|
|
throw("runtime: address space conflict")
|
|
}
|
|
return
|
|
}
|
|
|
|
p := mmap(v, n, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_FIXED|_MAP_PRIVATE, -1, 0)
|
|
if uintptr(p) == _ENOMEM {
|
|
throw("runtime: out of memory")
|
|
}
|
|
if p != v {
|
|
throw("runtime: cannot map pages in arena address space")
|
|
}
|
|
}
|