1
0
mirror of https://github.com/golang/go synced 2024-10-04 08:31:22 -06:00
go/src/pkg/runtime/mgc0.c
Russ Cox 4608feb18b runtime: simpler heap map, memory allocation
The old heap maps used a multilevel table, but that
was overkill: there are only 1M entries on a 32-bit
machine and we can arrange to use a dense address
range on a 64-bit machine.

The heap map is in bss.  The assumption is that if
we don't touch the pages they won't be mapped in.

Also moved some duplicated memory allocation
code out of the OS-specific files.

R=r
CC=golang-dev
https://golang.org/cl/4118042
2011-01-28 15:03:26 -05:00

433 lines
9.6 KiB
C

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Garbage collector -- step 0.
//
// Stop the world, mark and sweep garbage collector.
// NOT INTENDED FOR PRODUCTION USE.
//
// A mark and sweep collector provides a way to exercise
// and test the memory allocator and the stack walking machinery
// without also needing to get reference counting
// exactly right.
#include "runtime.h"
#include "malloc.h"
enum {
Debug = 0
};
typedef struct BlockList BlockList;
struct BlockList
{
byte *obj;
uintptr size;
};
extern byte data[];
extern byte etext[];
extern byte end[];
static G *fing;
static Finalizer *finq;
static int32 fingwait;
static BlockList *bl, *ebl;
static void runfinq(void);
enum {
PtrSize = sizeof(void*)
};
static void
scanblock(byte *b, int64 n)
{
int32 off;
void *obj;
uintptr size;
uint32 *refp, ref;
void **vp;
int64 i;
BlockList *w;
w = bl;
w->obj = b;
w->size = n;
w++;
while(w > bl) {
w--;
b = w->obj;
n = w->size;
if(Debug > 1)
runtime·printf("scanblock %p %D\n", b, n);
off = (uint32)(uintptr)b & (PtrSize-1);
if(off) {
b += PtrSize - off;
n -= PtrSize - off;
}
vp = (void**)b;
n /= PtrSize;
for(i=0; i<n; i++) {
obj = vp[i];
if(obj == nil)
continue;
if(runtime·mheap.arena_start <= (byte*)obj && (byte*)obj < runtime·mheap.arena_end) {
if(runtime·mlookup(obj, &obj, &size, nil, &refp)) {
ref = *refp;
switch(ref & ~RefFlags) {
case RefNone:
if(Debug > 1)
runtime·printf("found at %p: ", &vp[i]);
*refp = RefSome | (ref & RefFlags);
if(!(ref & RefNoPointers)) {
if(w >= ebl)
runtime·throw("scanblock: garbage collection stack overflow");
w->obj = obj;
w->size = size;
w++;
}
break;
}
}
}
}
}
}
static void
scanstack(G *gp)
{
Stktop *stk;
byte *sp;
if(gp == g)
sp = (byte*)&gp;
else
sp = gp->sched.sp;
if(Debug > 1)
runtime·printf("scanstack %d %p\n", gp->goid, sp);
stk = (Stktop*)gp->stackbase;
while(stk) {
scanblock(sp, (byte*)stk - sp);
sp = stk->gobuf.sp;
stk = (Stktop*)stk->stackbase;
}
}
static void
markfin(void *v)
{
uintptr size;
uint32 *refp;
size = 0;
refp = nil;
if(!runtime·mlookup(v, &v, &size, nil, &refp) || !(*refp & RefHasFinalizer))
runtime·throw("mark - finalizer inconsistency");
// do not mark the finalizer block itself. just mark the things it points at.
scanblock(v, size);
}
static void
mark(void)
{
G *gp;
uintptr blsize, nobj;
// Figure out how big an object stack we need.
// Get a new one if we need more than we have
// or we need significantly less than we have.
nobj = mstats.heap_objects;
if(nobj > ebl - bl || nobj < (ebl-bl)/4) {
if(bl != nil)
runtime·SysFree(bl, (byte*)ebl - (byte*)bl);
// While we're allocated a new object stack,
// add 20% headroom and also round up to
// the nearest page boundary, since mmap
// will anyway.
nobj = nobj * 12/10;
blsize = nobj * sizeof *bl;
blsize = (blsize + 4095) & ~4095;
nobj = blsize / sizeof *bl;
bl = runtime·SysAlloc(blsize);
ebl = bl + nobj;
}
// mark data+bss.
// skip runtime·mheap itself, which has no interesting pointers
// and is mostly zeroed and would not otherwise be paged in.
scanblock(data, (byte*)&runtime·mheap - data);
scanblock((byte*)(&runtime·mheap+1), end - (byte*)(&runtime·mheap+1));
// mark stacks
for(gp=runtime·allg; gp!=nil; gp=gp->alllink) {
switch(gp->status){
default:
runtime·printf("unexpected G.status %d\n", gp->status);
runtime·throw("mark - bad status");
case Gdead:
break;
case Grunning:
case Grecovery:
if(gp != g)
runtime·throw("mark - world not stopped");
scanstack(gp);
break;
case Grunnable:
case Gsyscall:
case Gwaiting:
scanstack(gp);
break;
}
}
// mark things pointed at by objects with finalizers
runtime·walkfintab(markfin);
}
// free RefNone, free & queue finalizers for RefNone|RefHasFinalizer, reset RefSome
static void
sweepspan(MSpan *s)
{
int32 n, npages, size;
byte *p;
uint32 ref, *gcrefp, *gcrefep;
MCache *c;
Finalizer *f;
p = (byte*)(s->start << PageShift);
if(s->sizeclass == 0) {
// Large block.
ref = s->gcref0;
switch(ref & ~(RefFlags^RefHasFinalizer)) {
case RefNone:
// Free large object.
mstats.alloc -= s->npages<<PageShift;
mstats.nfree++;
runtime·memclr(p, s->npages<<PageShift);
if(ref & RefProfiled)
runtime·MProf_Free(p, s->npages<<PageShift);
s->gcref0 = RefFree;
runtime·MHeap_Free(&runtime·mheap, s, 1);
break;
case RefNone|RefHasFinalizer:
f = runtime·getfinalizer(p, 1);
if(f == nil)
runtime·throw("finalizer inconsistency");
f->arg = p;
f->next = finq;
finq = f;
ref &= ~RefHasFinalizer;
// fall through
case RefSome:
case RefSome|RefHasFinalizer:
s->gcref0 = RefNone | (ref&RefFlags);
break;
}
return;
}
// Chunk full of small blocks.
runtime·MGetSizeClassInfo(s->sizeclass, &size, &npages, &n);
gcrefp = s->gcref;
gcrefep = s->gcref + n;
for(; gcrefp < gcrefep; gcrefp++, p += size) {
ref = *gcrefp;
if(ref < RefNone) // RefFree or RefStack
continue;
switch(ref & ~(RefFlags^RefHasFinalizer)) {
case RefNone:
// Free small object.
if(ref & RefProfiled)
runtime·MProf_Free(p, size);
*gcrefp = RefFree;
c = m->mcache;
if(size > sizeof(uintptr))
((uintptr*)p)[1] = 1; // mark as "needs to be zeroed"
mstats.alloc -= size;
mstats.nfree++;
mstats.by_size[s->sizeclass].nfree++;
runtime·MCache_Free(c, p, s->sizeclass, size);
break;
case RefNone|RefHasFinalizer:
f = runtime·getfinalizer(p, 1);
if(f == nil)
runtime·throw("finalizer inconsistency");
f->arg = p;
f->next = finq;
finq = f;
ref &= ~RefHasFinalizer;
// fall through
case RefSome:
case RefSome|RefHasFinalizer:
*gcrefp = RefNone | (ref&RefFlags);
break;
}
}
}
static void
sweep(void)
{
MSpan *s;
for(s = runtime·mheap.allspans; s != nil; s = s->allnext)
if(s->state == MSpanInUse)
sweepspan(s);
}
// Semaphore, not Lock, so that the goroutine
// reschedules when there is contention rather
// than spinning.
static uint32 gcsema = 1;
// Initialized from $GOGC. GOGC=off means no gc.
//
// Next gc is after we've allocated an extra amount of
// memory proportional to the amount already in use.
// If gcpercent=100 and we're using 4M, we'll gc again
// when we get to 8M. This keeps the gc cost in linear
// proportion to the allocation cost. Adjusting gcpercent
// just changes the linear constant (and also the amount of
// extra memory used).
static int32 gcpercent = -2;
static void
stealcache(void)
{
M *m;
for(m=runtime·allm; m; m=m->alllink)
runtime·MCache_ReleaseAll(m->mcache);
}
static void
cachestats(void)
{
M *m;
MCache *c;
for(m=runtime·allm; m; m=m->alllink) {
c = m->mcache;
mstats.heap_alloc += c->local_alloc;
c->local_alloc = 0;
mstats.heap_objects += c->local_objects;
c->local_objects = 0;
}
}
void
runtime·gc(int32 force)
{
int64 t0, t1;
byte *p;
Finalizer *fp;
// The gc is turned off (via enablegc) until
// the bootstrap has completed.
// Also, malloc gets called in the guts
// of a number of libraries that might be
// holding locks. To avoid priority inversion
// problems, don't bother trying to run gc
// while holding a lock. The next mallocgc
// without a lock will do the gc instead.
if(!mstats.enablegc || m->locks > 0 || runtime·panicking)
return;
if(gcpercent == -2) { // first time through
p = runtime·getenv("GOGC");
if(p == nil || p[0] == '\0')
gcpercent = 100;
else if(runtime·strcmp(p, (byte*)"off") == 0)
gcpercent = -1;
else
gcpercent = runtime·atoi(p);
}
if(gcpercent < 0)
return;
runtime·semacquire(&gcsema);
t0 = runtime·nanotime();
m->gcing = 1;
runtime·stoptheworld();
if(runtime·mheap.Lock.key != 0)
runtime·throw("runtime·mheap locked during gc");
if(force || mstats.heap_alloc >= mstats.next_gc) {
cachestats();
mark();
sweep();
stealcache();
mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100;
}
m->gcing = 0;
m->locks++; // disable gc during the mallocs in newproc
fp = finq;
if(fp != nil) {
// kick off or wake up goroutine to run queued finalizers
if(fing == nil)
fing = runtime·newproc1((byte*)runfinq, nil, 0, 0);
else if(fingwait) {
fingwait = 0;
runtime·ready(fing);
}
}
m->locks--;
t1 = runtime·nanotime();
mstats.numgc++;
mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t1 - t0;
mstats.pause_total_ns += t1 - t0;
if(mstats.debuggc)
runtime·printf("pause %D\n", t1-t0);
runtime·semrelease(&gcsema);
runtime·starttheworld();
// give the queued finalizers, if any, a chance to run
if(fp != nil)
runtime·gosched();
}
static void
runfinq(void)
{
Finalizer *f, *next;
byte *frame;
for(;;) {
// There's no need for a lock in this section
// because it only conflicts with the garbage
// collector, and the garbage collector only
// runs when everyone else is stopped, and
// runfinq only stops at the gosched() or
// during the calls in the for loop.
f = finq;
finq = nil;
if(f == nil) {
fingwait = 1;
g->status = Gwaiting;
runtime·gosched();
continue;
}
for(; f; f=next) {
next = f->next;
frame = runtime·mal(sizeof(uintptr) + f->nret);
*(void**)frame = f->arg;
reflect·call((byte*)f->fn, frame, sizeof(uintptr) + f->nret);
runtime·free(frame);
f->fn = nil;
f->arg = nil;
f->next = nil;
runtime·free(f);
}
runtime·gc(1); // trigger another gc to clean up the finalized objects, if possible
}
}