1
0
mirror of https://github.com/golang/go synced 2024-11-14 19:00:27 -07:00
go/usr/austin/ogle/vars.go
Austin Clements 4211384976 Switch ogle to in-tree gosym package. Delete my private sym
package.  If a Sym is a function symbol, include a reference
to the Func so it's easily accessible when you're traversing
the list of all symbols.  This diff is more interesting than
the proc switch because the gosym interface differs from the
old sym interface.

R=rsc
APPROVED=rsc
DELTA=1957  (34 added, 1868 deleted, 55 changed)
OCL=34969
CL=35008
2009-09-25 09:39:08 -07:00

277 lines
6.9 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ogle
import (
"debug/gosym";
"debug/proc";
"eval";
"log";
"os";
)
/*
* Remote frame pointers
*/
// A NotOnStack error occurs when attempting to access a variable in a
// remote frame where that remote frame is not on the current stack.
type NotOnStack struct {
Fn *gosym.Func;
Goroutine *Goroutine;
}
func (e NotOnStack) String() string {
return "function " + e.Fn.Name + " not on " + e.Goroutine.String() + "'s stack";
}
// A remoteFramePtr is an implementation of eval.PtrValue that
// represents a pointer to a function frame in a remote process. When
// accessed, this locates the function on the current goroutine's
// stack and returns a structure containing the local variables of
// that function.
type remoteFramePtr struct {
p *Process;
fn *gosym.Func;
rt *remoteType;
}
func (v remoteFramePtr) String() string {
// TODO(austin): This could be a really awesome string method
return "<remote frame>";
}
func (v remoteFramePtr) Assign(t *eval.Thread, o eval.Value) {
v.Set(t, o.(eval.PtrValue).Get(t));
}
func (v remoteFramePtr) Get(t *eval.Thread) eval.Value {
g := v.p.curGoroutine;
if g == nil || g.frame == nil {
t.Abort(NoCurrentGoroutine{});
}
for f := g.frame; f != nil; f = f.aOuter(t) {
if f.fn != v.fn {
continue;
}
// TODO(austin): Register for shootdown with f
return v.rt.mk(remote{f.fp, v.p});
}
t.Abort(NotOnStack{v.fn, g});
panic();
}
func (v remoteFramePtr) Set(t *eval.Thread, x eval.Value) {
// Theoretically this could be a static error. If remote
// packages were packages, remote frames could just be defined
// as constants.
t.Abort(ReadOnlyError("remote frames cannot be assigned to"));
}
/*
* Remote packages
*/
// TODO(austin): Remote packages are implemented as structs right now,
// which has some weird consequences. You can attempt to assign to a
// remote package. It also produces terrible error messages.
// Ideally, these would actually be packages, but somehow first-class
// so they could be assigned to other names.
// A remotePackage is an implementation of eval.StructValue that
// represents a package in a remote process. It's essentially a
// regular struct, except it cannot be assigned to.
type remotePackage struct {
defs []eval.Value;
}
func (v remotePackage) String() string {
return "<remote package>";
}
func (v remotePackage) Assign(t *eval.Thread, o eval.Value) {
t.Abort(ReadOnlyError("remote packages cannot be assigned to"));
}
func (v remotePackage) Get(t *eval.Thread) eval.StructValue {
return v;
}
func (v remotePackage) Field(t *eval.Thread, i int) eval.Value {
return v.defs[i];
}
/*
* Remote variables
*/
// populateWorld defines constants in the given world for each package
// in this process. These packages are structs that, in turn, contain
// fields for each global and function in that package.
func (p *Process) populateWorld(w *eval.World) os.Error {
type def struct {
t eval.Type;
v eval.Value;
}
packages := make(map[string] map[string] def);
for _, s := range p.syms.Syms {
if s.ReceiverName() != "" {
// TODO(austin)
continue;
}
// Package
pkgName := s.PackageName();
switch pkgName {
case "", "type", "extratype", "string", "go":
// "go" is really "go.string"
continue;
}
pkg, ok := packages[pkgName];
if !ok {
pkg = make(map[string] def);
packages[pkgName] = pkg;
}
// Symbol name
name := s.BaseName();
if _, ok := pkg[name]; ok {
log.Stderrf("Multiple definitions of symbol %s", s.Name);
continue;
}
// Symbol type
rt, err := p.typeOfSym(&s);
if err != nil {
return err;
}
// Definition
switch s.Type {
case 'D', 'd', 'B', 'b':
// Global variable
if rt == nil {
continue;
}
pkg[name] = def{rt.Type, rt.mk(remote{proc.Word(s.Value), p})};
case 'T', 't', 'L', 'l':
// Function
s := s.Func;
// TODO(austin): Ideally, this would *also* be
// callable. How does that interact with type
// conversion syntax?
rt, err := p.makeFrameType(s);
if err != nil {
return err;
}
pkg[name] = def{eval.NewPtrType(rt.Type), remoteFramePtr{p, s, rt}};
}
}
// TODO(austin): Define remote types
// Define packages
for pkgName, defs := range packages {
fields := make([]eval.StructField, len(defs));
vals := make([]eval.Value, len(defs));
i := 0;
for name, def := range defs {
fields[i].Name = name;
fields[i].Type = def.t;
vals[i] = def.v;
i++;
}
pkgType := eval.NewStructType(fields);
pkgVal := remotePackage{vals};
err := w.DefineConst(pkgName, pkgType, pkgVal);
if err != nil {
log.Stderrf("while defining package %s: %v", pkgName, err);
}
}
return nil;
}
// typeOfSym returns the type associated with a symbol. If the symbol
// has no type, returns nil.
func (p *Process) typeOfSym(s *gosym.Sym) (*remoteType, os.Error) {
if s.GoType == 0 {
return nil, nil;
}
addr := proc.Word(s.GoType);
var rt *remoteType;
err := try(func(a aborter) {
rt = parseRemoteType(a, p.runtime.Type.mk(remote{addr, p}).(remoteStruct));
});
if err != nil {
return nil, err;
}
return rt, nil;
}
// makeFrameType constructs a struct type for the frame of a function.
// The offsets in this struct type are such that the struct can be
// instantiated at this function's frame pointer.
func (p *Process) makeFrameType(s *gosym.Func) (*remoteType, os.Error) {
n := len(s.Params) + len(s.Locals);
fields := make([]eval.StructField, n);
layout := make([]remoteStructField, n);
i := 0;
// TODO(austin): There can be multiple locals/parameters with
// the same name. We probably need liveness information to do
// anything about this. Once we have that, perhaps we give
// such fields interface{} type? Or perhaps we disambiguate
// the names with numbers. Disambiguation is annoying for
// things like "i", where there's an obvious right answer.
for _, param := range s.Params {
rt, err := p.typeOfSym(param);
if err != nil {
return nil, err;
}
if rt == nil {
//fmt.Printf(" (no type)\n");
continue;
}
// TODO(austin): Why do local variables carry their
// package name?
fields[i].Name = param.BaseName();
fields[i].Type = rt.Type;
// Parameters have positive offsets from FP
layout[i].offset = int(param.Value);
layout[i].fieldType = rt;
i++;
}
for _, local := range s.Locals {
rt, err := p.typeOfSym(local);
if err != nil {
return nil, err;
}
if rt == nil {
continue;
}
fields[i].Name = local.BaseName();
fields[i].Type = rt.Type;
// Locals have negative offsets from FP - PtrSize
layout[i].offset = -int(local.Value) - p.PtrSize();
layout[i].fieldType = rt;
i++;
}
fields = fields[0:i];
layout = layout[0:i];
t := eval.NewStructType(fields);
mk := func(r remote) eval.Value { return remoteStruct{r, layout} };
return &remoteType{t, 0, 0, mk}, nil;
}