mirror of
https://github.com/golang/go
synced 2024-11-19 20:54:39 -07:00
4019d0e424
For gccgo runtime and Darwin where -fno-common is the default. R=iant, dave CC=golang-dev https://golang.org/cl/7094061
922 lines
24 KiB
Plaintext
922 lines
24 KiB
Plaintext
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// See malloc.h for overview.
|
|
//
|
|
// TODO(rsc): double-check stats.
|
|
|
|
package runtime
|
|
#include "runtime.h"
|
|
#include "arch_GOARCH.h"
|
|
#include "stack.h"
|
|
#include "malloc.h"
|
|
#include "defs_GOOS_GOARCH.h"
|
|
#include "type.h"
|
|
#include "typekind.h"
|
|
#include "race.h"
|
|
|
|
#pragma dataflag 16 /* mark mheap as 'no pointers', hiding from garbage collector */
|
|
MHeap runtime·mheap;
|
|
|
|
int32 runtime·checking;
|
|
|
|
extern MStats mstats; // defined in zruntime_def_$GOOS_$GOARCH.go
|
|
|
|
extern volatile intgo runtime·MemProfileRate;
|
|
|
|
// Allocate an object of at least size bytes.
|
|
// Small objects are allocated from the per-thread cache's free lists.
|
|
// Large objects (> 32 kB) are allocated straight from the heap.
|
|
void*
|
|
runtime·mallocgc(uintptr size, uint32 flag, int32 dogc, int32 zeroed)
|
|
{
|
|
int32 sizeclass;
|
|
intgo rate;
|
|
MCache *c;
|
|
uintptr npages;
|
|
MSpan *s;
|
|
void *v;
|
|
|
|
if(runtime·gcwaiting && g != m->g0 && m->locks == 0)
|
|
runtime·gosched();
|
|
if(m->mallocing)
|
|
runtime·throw("malloc/free - deadlock");
|
|
m->mallocing = 1;
|
|
if(size == 0)
|
|
size = 1;
|
|
|
|
if(DebugTypeAtBlockEnd)
|
|
size += sizeof(uintptr);
|
|
|
|
c = m->mcache;
|
|
c->local_nmalloc++;
|
|
if(size <= MaxSmallSize) {
|
|
// Allocate from mcache free lists.
|
|
sizeclass = runtime·SizeToClass(size);
|
|
size = runtime·class_to_size[sizeclass];
|
|
v = runtime·MCache_Alloc(c, sizeclass, size, zeroed);
|
|
if(v == nil)
|
|
runtime·throw("out of memory");
|
|
c->local_alloc += size;
|
|
c->local_total_alloc += size;
|
|
c->local_by_size[sizeclass].nmalloc++;
|
|
} else {
|
|
// TODO(rsc): Report tracebacks for very large allocations.
|
|
|
|
// Allocate directly from heap.
|
|
npages = size >> PageShift;
|
|
if((size & PageMask) != 0)
|
|
npages++;
|
|
s = runtime·MHeap_Alloc(&runtime·mheap, npages, 0, 1, zeroed);
|
|
if(s == nil)
|
|
runtime·throw("out of memory");
|
|
size = npages<<PageShift;
|
|
c->local_alloc += size;
|
|
c->local_total_alloc += size;
|
|
v = (void*)(s->start << PageShift);
|
|
|
|
// setup for mark sweep
|
|
runtime·markspan(v, 0, 0, true);
|
|
}
|
|
|
|
if (sizeof(void*) == 4 && c->local_total_alloc >= (1<<30)) {
|
|
// purge cache stats to prevent overflow
|
|
runtime·lock(&runtime·mheap);
|
|
runtime·purgecachedstats(c);
|
|
runtime·unlock(&runtime·mheap);
|
|
}
|
|
|
|
if(!(flag & FlagNoGC))
|
|
runtime·markallocated(v, size, (flag&FlagNoPointers) != 0);
|
|
|
|
if(DebugTypeAtBlockEnd)
|
|
*(uintptr*)((uintptr)v+size-sizeof(uintptr)) = 0;
|
|
|
|
m->mallocing = 0;
|
|
|
|
if(!(flag & FlagNoProfiling) && (rate = runtime·MemProfileRate) > 0) {
|
|
if(size >= rate)
|
|
goto profile;
|
|
if(m->mcache->next_sample > size)
|
|
m->mcache->next_sample -= size;
|
|
else {
|
|
// pick next profile time
|
|
// If you change this, also change allocmcache.
|
|
if(rate > 0x3fffffff) // make 2*rate not overflow
|
|
rate = 0x3fffffff;
|
|
m->mcache->next_sample = runtime·fastrand1() % (2*rate);
|
|
profile:
|
|
runtime·setblockspecial(v, true);
|
|
runtime·MProf_Malloc(v, size);
|
|
}
|
|
}
|
|
|
|
if(dogc && mstats.heap_alloc >= mstats.next_gc)
|
|
runtime·gc(0);
|
|
|
|
if(raceenabled) {
|
|
runtime·racemalloc(v, size, m->racepc);
|
|
m->racepc = nil;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
void*
|
|
runtime·malloc(uintptr size)
|
|
{
|
|
return runtime·mallocgc(size, 0, 0, 1);
|
|
}
|
|
|
|
// Free the object whose base pointer is v.
|
|
void
|
|
runtime·free(void *v)
|
|
{
|
|
int32 sizeclass;
|
|
MSpan *s;
|
|
MCache *c;
|
|
uint32 prof;
|
|
uintptr size;
|
|
|
|
if(v == nil)
|
|
return;
|
|
|
|
// If you change this also change mgc0.c:/^sweep,
|
|
// which has a copy of the guts of free.
|
|
|
|
if(m->mallocing)
|
|
runtime·throw("malloc/free - deadlock");
|
|
m->mallocing = 1;
|
|
|
|
if(!runtime·mlookup(v, nil, nil, &s)) {
|
|
runtime·printf("free %p: not an allocated block\n", v);
|
|
runtime·throw("free runtime·mlookup");
|
|
}
|
|
prof = runtime·blockspecial(v);
|
|
|
|
if(raceenabled)
|
|
runtime·racefree(v);
|
|
|
|
// Find size class for v.
|
|
sizeclass = s->sizeclass;
|
|
c = m->mcache;
|
|
if(sizeclass == 0) {
|
|
// Large object.
|
|
size = s->npages<<PageShift;
|
|
*(uintptr*)(s->start<<PageShift) = 1; // mark as "needs to be zeroed"
|
|
// Must mark v freed before calling unmarkspan and MHeap_Free:
|
|
// they might coalesce v into other spans and change the bitmap further.
|
|
runtime·markfreed(v, size);
|
|
runtime·unmarkspan(v, 1<<PageShift);
|
|
runtime·MHeap_Free(&runtime·mheap, s, 1);
|
|
} else {
|
|
// Small object.
|
|
size = runtime·class_to_size[sizeclass];
|
|
if(size > sizeof(uintptr))
|
|
((uintptr*)v)[1] = 1; // mark as "needs to be zeroed"
|
|
// Must mark v freed before calling MCache_Free:
|
|
// it might coalesce v and other blocks into a bigger span
|
|
// and change the bitmap further.
|
|
runtime·markfreed(v, size);
|
|
c->local_by_size[sizeclass].nfree++;
|
|
runtime·MCache_Free(c, v, sizeclass, size);
|
|
}
|
|
c->local_nfree++;
|
|
c->local_alloc -= size;
|
|
if(prof)
|
|
runtime·MProf_Free(v, size);
|
|
m->mallocing = 0;
|
|
}
|
|
|
|
int32
|
|
runtime·mlookup(void *v, byte **base, uintptr *size, MSpan **sp)
|
|
{
|
|
uintptr n, i;
|
|
byte *p;
|
|
MSpan *s;
|
|
|
|
m->mcache->local_nlookup++;
|
|
if (sizeof(void*) == 4 && m->mcache->local_nlookup >= (1<<30)) {
|
|
// purge cache stats to prevent overflow
|
|
runtime·lock(&runtime·mheap);
|
|
runtime·purgecachedstats(m->mcache);
|
|
runtime·unlock(&runtime·mheap);
|
|
}
|
|
|
|
s = runtime·MHeap_LookupMaybe(&runtime·mheap, v);
|
|
if(sp)
|
|
*sp = s;
|
|
if(s == nil) {
|
|
runtime·checkfreed(v, 1);
|
|
if(base)
|
|
*base = nil;
|
|
if(size)
|
|
*size = 0;
|
|
return 0;
|
|
}
|
|
|
|
p = (byte*)((uintptr)s->start<<PageShift);
|
|
if(s->sizeclass == 0) {
|
|
// Large object.
|
|
if(base)
|
|
*base = p;
|
|
if(size)
|
|
*size = s->npages<<PageShift;
|
|
return 1;
|
|
}
|
|
|
|
if((byte*)v >= (byte*)s->limit) {
|
|
// pointers past the last block do not count as pointers.
|
|
return 0;
|
|
}
|
|
|
|
n = s->elemsize;
|
|
if(base) {
|
|
i = ((byte*)v - p)/n;
|
|
*base = p + i*n;
|
|
}
|
|
if(size)
|
|
*size = n;
|
|
|
|
return 1;
|
|
}
|
|
|
|
MCache*
|
|
runtime·allocmcache(void)
|
|
{
|
|
intgo rate;
|
|
MCache *c;
|
|
|
|
runtime·lock(&runtime·mheap);
|
|
c = runtime·FixAlloc_Alloc(&runtime·mheap.cachealloc);
|
|
mstats.mcache_inuse = runtime·mheap.cachealloc.inuse;
|
|
mstats.mcache_sys = runtime·mheap.cachealloc.sys;
|
|
runtime·unlock(&runtime·mheap);
|
|
runtime·memclr((byte*)c, sizeof(*c));
|
|
|
|
// Set first allocation sample size.
|
|
rate = runtime·MemProfileRate;
|
|
if(rate > 0x3fffffff) // make 2*rate not overflow
|
|
rate = 0x3fffffff;
|
|
if(rate != 0)
|
|
c->next_sample = runtime·fastrand1() % (2*rate);
|
|
|
|
return c;
|
|
}
|
|
|
|
void
|
|
runtime·freemcache(MCache *c)
|
|
{
|
|
runtime·MCache_ReleaseAll(c);
|
|
runtime·lock(&runtime·mheap);
|
|
runtime·purgecachedstats(c);
|
|
runtime·FixAlloc_Free(&runtime·mheap.cachealloc, c);
|
|
runtime·unlock(&runtime·mheap);
|
|
}
|
|
|
|
void
|
|
runtime·purgecachedstats(MCache *c)
|
|
{
|
|
// Protected by either heap or GC lock.
|
|
mstats.heap_alloc += c->local_cachealloc;
|
|
c->local_cachealloc = 0;
|
|
mstats.heap_objects += c->local_objects;
|
|
c->local_objects = 0;
|
|
mstats.nmalloc += c->local_nmalloc;
|
|
c->local_nmalloc = 0;
|
|
mstats.nfree += c->local_nfree;
|
|
c->local_nfree = 0;
|
|
mstats.nlookup += c->local_nlookup;
|
|
c->local_nlookup = 0;
|
|
mstats.alloc += c->local_alloc;
|
|
c->local_alloc= 0;
|
|
mstats.total_alloc += c->local_total_alloc;
|
|
c->local_total_alloc= 0;
|
|
}
|
|
|
|
uintptr runtime·sizeof_C_MStats = sizeof(MStats);
|
|
|
|
#define MaxArena32 (2U<<30)
|
|
|
|
void
|
|
runtime·mallocinit(void)
|
|
{
|
|
byte *p;
|
|
uintptr arena_size, bitmap_size;
|
|
extern byte end[];
|
|
byte *want;
|
|
uintptr limit;
|
|
|
|
p = nil;
|
|
arena_size = 0;
|
|
bitmap_size = 0;
|
|
|
|
// for 64-bit build
|
|
USED(p);
|
|
USED(arena_size);
|
|
USED(bitmap_size);
|
|
|
|
runtime·InitSizes();
|
|
|
|
limit = runtime·memlimit();
|
|
|
|
// Set up the allocation arena, a contiguous area of memory where
|
|
// allocated data will be found. The arena begins with a bitmap large
|
|
// enough to hold 4 bits per allocated word.
|
|
if(sizeof(void*) == 8 && (limit == 0 || limit > (1<<30))) {
|
|
// On a 64-bit machine, allocate from a single contiguous reservation.
|
|
// 128 GB (MaxMem) should be big enough for now.
|
|
//
|
|
// The code will work with the reservation at any address, but ask
|
|
// SysReserve to use 0x000000c000000000 if possible.
|
|
// Allocating a 128 GB region takes away 37 bits, and the amd64
|
|
// doesn't let us choose the top 17 bits, so that leaves the 11 bits
|
|
// in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means
|
|
// that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x0x00df.
|
|
// In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
|
|
// UTF-8 sequences, and they are otherwise as far away from
|
|
// ff (likely a common byte) as possible. An earlier attempt to use 0x11f8
|
|
// caused out of memory errors on OS X during thread allocations.
|
|
// These choices are both for debuggability and to reduce the
|
|
// odds of the conservative garbage collector not collecting memory
|
|
// because some non-pointer block of memory had a bit pattern
|
|
// that matched a memory address.
|
|
//
|
|
// Actually we reserve 136 GB (because the bitmap ends up being 8 GB)
|
|
// but it hardly matters: e0 00 is not valid UTF-8 either.
|
|
//
|
|
// If this fails we fall back to the 32 bit memory mechanism
|
|
arena_size = MaxMem;
|
|
bitmap_size = arena_size / (sizeof(void*)*8/4);
|
|
p = runtime·SysReserve((void*)(0x00c0ULL<<32), bitmap_size + arena_size);
|
|
}
|
|
if (p == nil) {
|
|
// On a 32-bit machine, we can't typically get away
|
|
// with a giant virtual address space reservation.
|
|
// Instead we map the memory information bitmap
|
|
// immediately after the data segment, large enough
|
|
// to handle another 2GB of mappings (256 MB),
|
|
// along with a reservation for another 512 MB of memory.
|
|
// When that gets used up, we'll start asking the kernel
|
|
// for any memory anywhere and hope it's in the 2GB
|
|
// following the bitmap (presumably the executable begins
|
|
// near the bottom of memory, so we'll have to use up
|
|
// most of memory before the kernel resorts to giving out
|
|
// memory before the beginning of the text segment).
|
|
//
|
|
// Alternatively we could reserve 512 MB bitmap, enough
|
|
// for 4GB of mappings, and then accept any memory the
|
|
// kernel threw at us, but normally that's a waste of 512 MB
|
|
// of address space, which is probably too much in a 32-bit world.
|
|
bitmap_size = MaxArena32 / (sizeof(void*)*8/4);
|
|
arena_size = 512<<20;
|
|
if(limit > 0 && arena_size+bitmap_size > limit) {
|
|
bitmap_size = (limit / 9) & ~((1<<PageShift) - 1);
|
|
arena_size = bitmap_size * 8;
|
|
}
|
|
|
|
// SysReserve treats the address we ask for, end, as a hint,
|
|
// not as an absolute requirement. If we ask for the end
|
|
// of the data segment but the operating system requires
|
|
// a little more space before we can start allocating, it will
|
|
// give out a slightly higher pointer. Except QEMU, which
|
|
// is buggy, as usual: it won't adjust the pointer upward.
|
|
// So adjust it upward a little bit ourselves: 1/4 MB to get
|
|
// away from the running binary image and then round up
|
|
// to a MB boundary.
|
|
want = (byte*)(((uintptr)end + (1<<18) + (1<<20) - 1)&~((1<<20)-1));
|
|
p = runtime·SysReserve(want, bitmap_size + arena_size);
|
|
if(p == nil)
|
|
runtime·throw("runtime: cannot reserve arena virtual address space");
|
|
if((uintptr)p & (((uintptr)1<<PageShift)-1))
|
|
runtime·printf("runtime: SysReserve returned unaligned address %p; asked for %p", p, bitmap_size+arena_size);
|
|
}
|
|
if((uintptr)p & (((uintptr)1<<PageShift)-1))
|
|
runtime·throw("runtime: SysReserve returned unaligned address");
|
|
|
|
runtime·mheap.bitmap = p;
|
|
runtime·mheap.arena_start = p + bitmap_size;
|
|
runtime·mheap.arena_used = runtime·mheap.arena_start;
|
|
runtime·mheap.arena_end = runtime·mheap.arena_start + arena_size;
|
|
|
|
// Initialize the rest of the allocator.
|
|
runtime·MHeap_Init(&runtime·mheap, runtime·SysAlloc);
|
|
m->mcache = runtime·allocmcache();
|
|
|
|
// See if it works.
|
|
runtime·free(runtime·malloc(1));
|
|
}
|
|
|
|
void*
|
|
runtime·MHeap_SysAlloc(MHeap *h, uintptr n)
|
|
{
|
|
byte *p;
|
|
|
|
if(n > h->arena_end - h->arena_used) {
|
|
// We are in 32-bit mode, maybe we didn't use all possible address space yet.
|
|
// Reserve some more space.
|
|
byte *new_end;
|
|
uintptr needed;
|
|
|
|
needed = (uintptr)h->arena_used + n - (uintptr)h->arena_end;
|
|
// Round wanted arena size to a multiple of 256MB.
|
|
needed = (needed + (256<<20) - 1) & ~((256<<20)-1);
|
|
new_end = h->arena_end + needed;
|
|
if(new_end <= h->arena_start + MaxArena32) {
|
|
p = runtime·SysReserve(h->arena_end, new_end - h->arena_end);
|
|
if(p == h->arena_end)
|
|
h->arena_end = new_end;
|
|
}
|
|
}
|
|
if(n <= h->arena_end - h->arena_used) {
|
|
// Keep taking from our reservation.
|
|
p = h->arena_used;
|
|
runtime·SysMap(p, n);
|
|
h->arena_used += n;
|
|
runtime·MHeap_MapBits(h);
|
|
if(raceenabled)
|
|
runtime·racemapshadow(p, n);
|
|
return p;
|
|
}
|
|
|
|
// If using 64-bit, our reservation is all we have.
|
|
if(sizeof(void*) == 8 && (uintptr)h->bitmap >= 0xffffffffU)
|
|
return nil;
|
|
|
|
// On 32-bit, once the reservation is gone we can
|
|
// try to get memory at a location chosen by the OS
|
|
// and hope that it is in the range we allocated bitmap for.
|
|
p = runtime·SysAlloc(n);
|
|
if(p == nil)
|
|
return nil;
|
|
|
|
if(p < h->arena_start || p+n - h->arena_start >= MaxArena32) {
|
|
runtime·printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n",
|
|
p, h->arena_start, h->arena_start+MaxArena32);
|
|
runtime·SysFree(p, n);
|
|
return nil;
|
|
}
|
|
|
|
if(p+n > h->arena_used) {
|
|
h->arena_used = p+n;
|
|
if(h->arena_used > h->arena_end)
|
|
h->arena_end = h->arena_used;
|
|
runtime·MHeap_MapBits(h);
|
|
if(raceenabled)
|
|
runtime·racemapshadow(p, n);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
static Lock settype_lock;
|
|
|
|
void
|
|
runtime·settype_flush(M *mp, bool sysalloc)
|
|
{
|
|
uintptr *buf, *endbuf;
|
|
uintptr size, ofs, j, t;
|
|
uintptr ntypes, nbytes2, nbytes3;
|
|
uintptr *data2;
|
|
byte *data3;
|
|
bool sysalloc3;
|
|
void *v;
|
|
uintptr typ, p;
|
|
MSpan *s;
|
|
|
|
buf = mp->settype_buf;
|
|
endbuf = buf + mp->settype_bufsize;
|
|
|
|
runtime·lock(&settype_lock);
|
|
while(buf < endbuf) {
|
|
v = (void*)*buf;
|
|
*buf = 0;
|
|
buf++;
|
|
typ = *buf;
|
|
buf++;
|
|
|
|
// (Manually inlined copy of runtime·MHeap_Lookup)
|
|
p = (uintptr)v>>PageShift;
|
|
if(sizeof(void*) == 8)
|
|
p -= (uintptr)runtime·mheap.arena_start >> PageShift;
|
|
s = runtime·mheap.map[p];
|
|
|
|
if(s->sizeclass == 0) {
|
|
s->types.compression = MTypes_Single;
|
|
s->types.data = typ;
|
|
continue;
|
|
}
|
|
|
|
size = s->elemsize;
|
|
ofs = ((uintptr)v - (s->start<<PageShift)) / size;
|
|
|
|
switch(s->types.compression) {
|
|
case MTypes_Empty:
|
|
ntypes = (s->npages << PageShift) / size;
|
|
nbytes3 = 8*sizeof(uintptr) + 1*ntypes;
|
|
|
|
if(!sysalloc) {
|
|
data3 = runtime·mallocgc(nbytes3, FlagNoPointers, 0, 1);
|
|
} else {
|
|
data3 = runtime·SysAlloc(nbytes3);
|
|
if(0) runtime·printf("settype(0->3): SysAlloc(%x) --> %p\n", (uint32)nbytes3, data3);
|
|
}
|
|
|
|
s->types.compression = MTypes_Bytes;
|
|
s->types.sysalloc = sysalloc;
|
|
s->types.data = (uintptr)data3;
|
|
|
|
((uintptr*)data3)[1] = typ;
|
|
data3[8*sizeof(uintptr) + ofs] = 1;
|
|
break;
|
|
|
|
case MTypes_Words:
|
|
((uintptr*)s->types.data)[ofs] = typ;
|
|
break;
|
|
|
|
case MTypes_Bytes:
|
|
data3 = (byte*)s->types.data;
|
|
for(j=1; j<8; j++) {
|
|
if(((uintptr*)data3)[j] == typ) {
|
|
break;
|
|
}
|
|
if(((uintptr*)data3)[j] == 0) {
|
|
((uintptr*)data3)[j] = typ;
|
|
break;
|
|
}
|
|
}
|
|
if(j < 8) {
|
|
data3[8*sizeof(uintptr) + ofs] = j;
|
|
} else {
|
|
ntypes = (s->npages << PageShift) / size;
|
|
nbytes2 = ntypes * sizeof(uintptr);
|
|
|
|
if(!sysalloc) {
|
|
data2 = runtime·mallocgc(nbytes2, FlagNoPointers, 0, 1);
|
|
} else {
|
|
data2 = runtime·SysAlloc(nbytes2);
|
|
if(0) runtime·printf("settype.(3->2): SysAlloc(%x) --> %p\n", (uint32)nbytes2, data2);
|
|
}
|
|
|
|
sysalloc3 = s->types.sysalloc;
|
|
|
|
s->types.compression = MTypes_Words;
|
|
s->types.sysalloc = sysalloc;
|
|
s->types.data = (uintptr)data2;
|
|
|
|
// Move the contents of data3 to data2. Then deallocate data3.
|
|
for(j=0; j<ntypes; j++) {
|
|
t = data3[8*sizeof(uintptr) + j];
|
|
t = ((uintptr*)data3)[t];
|
|
data2[j] = t;
|
|
}
|
|
if(sysalloc3) {
|
|
nbytes3 = 8*sizeof(uintptr) + 1*ntypes;
|
|
if(0) runtime·printf("settype.(3->2): SysFree(%p,%x)\n", data3, (uint32)nbytes3);
|
|
runtime·SysFree(data3, nbytes3);
|
|
}
|
|
|
|
data2[ofs] = typ;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
runtime·unlock(&settype_lock);
|
|
|
|
mp->settype_bufsize = 0;
|
|
}
|
|
|
|
// It is forbidden to use this function if it is possible that
|
|
// explicit deallocation via calling runtime·free(v) may happen.
|
|
void
|
|
runtime·settype(void *v, uintptr t)
|
|
{
|
|
M *mp;
|
|
uintptr *buf;
|
|
uintptr i;
|
|
MSpan *s;
|
|
|
|
if(t == 0)
|
|
runtime·throw("settype: zero type");
|
|
|
|
mp = m;
|
|
buf = mp->settype_buf;
|
|
i = mp->settype_bufsize;
|
|
buf[i+0] = (uintptr)v;
|
|
buf[i+1] = t;
|
|
i += 2;
|
|
mp->settype_bufsize = i;
|
|
|
|
if(i == nelem(mp->settype_buf)) {
|
|
runtime·settype_flush(mp, false);
|
|
}
|
|
|
|
if(DebugTypeAtBlockEnd) {
|
|
s = runtime·MHeap_Lookup(&runtime·mheap, v);
|
|
*(uintptr*)((uintptr)v+s->elemsize-sizeof(uintptr)) = t;
|
|
}
|
|
}
|
|
|
|
void
|
|
runtime·settype_sysfree(MSpan *s)
|
|
{
|
|
uintptr ntypes, nbytes;
|
|
|
|
if(!s->types.sysalloc)
|
|
return;
|
|
|
|
nbytes = (uintptr)-1;
|
|
|
|
switch (s->types.compression) {
|
|
case MTypes_Words:
|
|
ntypes = (s->npages << PageShift) / s->elemsize;
|
|
nbytes = ntypes * sizeof(uintptr);
|
|
break;
|
|
case MTypes_Bytes:
|
|
ntypes = (s->npages << PageShift) / s->elemsize;
|
|
nbytes = 8*sizeof(uintptr) + 1*ntypes;
|
|
break;
|
|
}
|
|
|
|
if(nbytes != (uintptr)-1) {
|
|
if(0) runtime·printf("settype: SysFree(%p,%x)\n", (void*)s->types.data, (uint32)nbytes);
|
|
runtime·SysFree((void*)s->types.data, nbytes);
|
|
}
|
|
}
|
|
|
|
uintptr
|
|
runtime·gettype(void *v)
|
|
{
|
|
MSpan *s;
|
|
uintptr t, ofs;
|
|
byte *data;
|
|
|
|
s = runtime·MHeap_LookupMaybe(&runtime·mheap, v);
|
|
if(s != nil) {
|
|
t = 0;
|
|
switch(s->types.compression) {
|
|
case MTypes_Empty:
|
|
break;
|
|
case MTypes_Single:
|
|
t = s->types.data;
|
|
break;
|
|
case MTypes_Words:
|
|
ofs = (uintptr)v - (s->start<<PageShift);
|
|
t = ((uintptr*)s->types.data)[ofs/s->elemsize];
|
|
break;
|
|
case MTypes_Bytes:
|
|
ofs = (uintptr)v - (s->start<<PageShift);
|
|
data = (byte*)s->types.data;
|
|
t = data[8*sizeof(uintptr) + ofs/s->elemsize];
|
|
t = ((uintptr*)data)[t];
|
|
break;
|
|
default:
|
|
runtime·throw("runtime·gettype: invalid compression kind");
|
|
}
|
|
if(0) {
|
|
runtime·lock(&settype_lock);
|
|
runtime·printf("%p -> %d,%X\n", v, (int32)s->types.compression, (int64)t);
|
|
runtime·unlock(&settype_lock);
|
|
}
|
|
return t;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Runtime stubs.
|
|
|
|
void*
|
|
runtime·mal(uintptr n)
|
|
{
|
|
return runtime·mallocgc(n, 0, 1, 1);
|
|
}
|
|
|
|
#pragma textflag 7
|
|
void
|
|
runtime·new(Type *typ, uint8 *ret)
|
|
{
|
|
uint32 flag;
|
|
|
|
if(raceenabled)
|
|
m->racepc = runtime·getcallerpc(&typ);
|
|
|
|
if(typ->size == 0) {
|
|
// All 0-length allocations use this pointer.
|
|
// The language does not require the allocations to
|
|
// have distinct values.
|
|
ret = (uint8*)&runtime·zerobase;
|
|
} else {
|
|
flag = typ->kind&KindNoPointers ? FlagNoPointers : 0;
|
|
ret = runtime·mallocgc(typ->size, flag, 1, 1);
|
|
|
|
if(UseSpanType && !flag) {
|
|
if(false) {
|
|
runtime·printf("new %S: %p\n", *typ->string, ret);
|
|
}
|
|
runtime·settype(ret, (uintptr)typ | TypeInfo_SingleObject);
|
|
}
|
|
}
|
|
|
|
FLUSH(&ret);
|
|
}
|
|
|
|
// same as runtime·new, but callable from C
|
|
void*
|
|
runtime·cnew(Type *typ)
|
|
{
|
|
uint32 flag;
|
|
void *ret;
|
|
|
|
if(raceenabled)
|
|
m->racepc = runtime·getcallerpc(&typ);
|
|
|
|
if(typ->size == 0) {
|
|
// All 0-length allocations use this pointer.
|
|
// The language does not require the allocations to
|
|
// have distinct values.
|
|
ret = (uint8*)&runtime·zerobase;
|
|
} else {
|
|
flag = typ->kind&KindNoPointers ? FlagNoPointers : 0;
|
|
ret = runtime·mallocgc(typ->size, flag, 1, 1);
|
|
|
|
if(UseSpanType && !flag) {
|
|
if(false) {
|
|
runtime·printf("new %S: %p\n", *typ->string, ret);
|
|
}
|
|
runtime·settype(ret, (uintptr)typ | TypeInfo_SingleObject);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
typedef struct StackCacheNode StackCacheNode;
|
|
struct StackCacheNode
|
|
{
|
|
StackCacheNode *next;
|
|
void* batch[StackCacheBatch-1];
|
|
};
|
|
|
|
static StackCacheNode *stackcache;
|
|
static Lock stackcachemu;
|
|
|
|
// stackcacherefill/stackcacherelease implement global cache of stack segments.
|
|
// The cache is required to prevent unlimited growth of per-thread caches.
|
|
static void
|
|
stackcacherefill(void)
|
|
{
|
|
StackCacheNode *n;
|
|
int32 i, pos;
|
|
|
|
runtime·lock(&stackcachemu);
|
|
n = stackcache;
|
|
if(n)
|
|
stackcache = n->next;
|
|
runtime·unlock(&stackcachemu);
|
|
if(n == nil) {
|
|
n = (StackCacheNode*)runtime·SysAlloc(FixedStack*StackCacheBatch);
|
|
if(n == nil)
|
|
runtime·throw("out of memory (staccachekrefill)");
|
|
runtime·xadd64(&mstats.stacks_sys, FixedStack*StackCacheBatch);
|
|
for(i = 0; i < StackCacheBatch-1; i++)
|
|
n->batch[i] = (byte*)n + (i+1)*FixedStack;
|
|
}
|
|
pos = m->stackcachepos;
|
|
for(i = 0; i < StackCacheBatch-1; i++) {
|
|
m->stackcache[pos] = n->batch[i];
|
|
pos = (pos + 1) % StackCacheSize;
|
|
}
|
|
m->stackcache[pos] = n;
|
|
pos = (pos + 1) % StackCacheSize;
|
|
m->stackcachepos = pos;
|
|
m->stackcachecnt += StackCacheBatch;
|
|
}
|
|
|
|
static void
|
|
stackcacherelease(void)
|
|
{
|
|
StackCacheNode *n;
|
|
uint32 i, pos;
|
|
|
|
pos = (m->stackcachepos - m->stackcachecnt) % StackCacheSize;
|
|
n = (StackCacheNode*)m->stackcache[pos];
|
|
pos = (pos + 1) % StackCacheSize;
|
|
for(i = 0; i < StackCacheBatch-1; i++) {
|
|
n->batch[i] = m->stackcache[pos];
|
|
pos = (pos + 1) % StackCacheSize;
|
|
}
|
|
m->stackcachecnt -= StackCacheBatch;
|
|
runtime·lock(&stackcachemu);
|
|
n->next = stackcache;
|
|
stackcache = n;
|
|
runtime·unlock(&stackcachemu);
|
|
}
|
|
|
|
void*
|
|
runtime·stackalloc(uint32 n)
|
|
{
|
|
uint32 pos;
|
|
void *v;
|
|
|
|
// Stackalloc must be called on scheduler stack, so that we
|
|
// never try to grow the stack during the code that stackalloc runs.
|
|
// Doing so would cause a deadlock (issue 1547).
|
|
if(g != m->g0)
|
|
runtime·throw("stackalloc not on scheduler stack");
|
|
|
|
// Stack allocator uses malloc/free most of the time,
|
|
// but if we're in the middle of malloc and need stack,
|
|
// we have to do something else to avoid deadlock.
|
|
// In that case, we fall back on a fixed-size free-list
|
|
// allocator, assuming that inside malloc all the stack
|
|
// frames are small, so that all the stack allocations
|
|
// will be a single size, the minimum (right now, 5k).
|
|
if(n == FixedStack || m->mallocing || m->gcing) {
|
|
if(n != FixedStack) {
|
|
runtime·printf("stackalloc: in malloc, size=%d want %d", FixedStack, n);
|
|
runtime·throw("stackalloc");
|
|
}
|
|
if(m->stackcachecnt == 0)
|
|
stackcacherefill();
|
|
pos = m->stackcachepos;
|
|
pos = (pos - 1) % StackCacheSize;
|
|
v = m->stackcache[pos];
|
|
m->stackcachepos = pos;
|
|
m->stackcachecnt--;
|
|
m->stackinuse++;
|
|
return v;
|
|
}
|
|
return runtime·mallocgc(n, FlagNoProfiling|FlagNoGC, 0, 0);
|
|
}
|
|
|
|
void
|
|
runtime·stackfree(void *v, uintptr n)
|
|
{
|
|
uint32 pos;
|
|
|
|
if(n == FixedStack || m->mallocing || m->gcing) {
|
|
if(m->stackcachecnt == StackCacheSize)
|
|
stackcacherelease();
|
|
pos = m->stackcachepos;
|
|
m->stackcache[pos] = v;
|
|
m->stackcachepos = (pos + 1) % StackCacheSize;
|
|
m->stackcachecnt++;
|
|
m->stackinuse--;
|
|
return;
|
|
}
|
|
runtime·free(v);
|
|
}
|
|
|
|
func GC() {
|
|
runtime·gc(1);
|
|
}
|
|
|
|
func SetFinalizer(obj Eface, finalizer Eface) {
|
|
byte *base;
|
|
uintptr size;
|
|
FuncType *ft;
|
|
int32 i;
|
|
uintptr nret;
|
|
Type *t;
|
|
|
|
if(obj.type == nil) {
|
|
runtime·printf("runtime.SetFinalizer: first argument is nil interface\n");
|
|
goto throw;
|
|
}
|
|
if(obj.type->kind != KindPtr) {
|
|
runtime·printf("runtime.SetFinalizer: first argument is %S, not pointer\n", *obj.type->string);
|
|
goto throw;
|
|
}
|
|
if(!runtime·mlookup(obj.data, &base, &size, nil) || obj.data != base) {
|
|
runtime·printf("runtime.SetFinalizer: pointer not at beginning of allocated block\n");
|
|
goto throw;
|
|
}
|
|
nret = 0;
|
|
if(finalizer.type != nil) {
|
|
if(finalizer.type->kind != KindFunc)
|
|
goto badfunc;
|
|
ft = (FuncType*)finalizer.type;
|
|
if(ft->dotdotdot || ft->in.len != 1 || *(Type**)ft->in.array != obj.type)
|
|
goto badfunc;
|
|
|
|
// compute size needed for return parameters
|
|
for(i=0; i<ft->out.len; i++) {
|
|
t = ((Type**)ft->out.array)[i];
|
|
nret = (nret + t->align - 1) & ~(t->align - 1);
|
|
nret += t->size;
|
|
}
|
|
nret = (nret + sizeof(void*)-1) & ~(sizeof(void*)-1);
|
|
}
|
|
|
|
if(!runtime·addfinalizer(obj.data, finalizer.data, nret)) {
|
|
runtime·printf("runtime.SetFinalizer: finalizer already set\n");
|
|
goto throw;
|
|
}
|
|
return;
|
|
|
|
badfunc:
|
|
runtime·printf("runtime.SetFinalizer: second argument is %S, not func(%S)\n", *finalizer.type->string, *obj.type->string);
|
|
throw:
|
|
runtime·throw("runtime.SetFinalizer");
|
|
}
|