1
0
mirror of https://github.com/golang/go synced 2024-11-18 23:54:41 -07:00
go/internal/lsp/regtest/env.go
Rebecca Stambler 3d57cf2e72 internal/lsp: add regtest for golang/go#37984
This change also required the addition of a new run configuration -
WithEnv, which adds extra environment variables to the configuration.
Please let me know if this is the wrong approach.

Fixes golang/go#37984

Change-Id: Ied2a53a443dc74c7ed723b91765eeddc1a7c1c00
Reviewed-on: https://go-review.googlesource.com/c/tools/+/229128
Run-TryBot: Rebecca Stambler <rstambler@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Robert Findley <rfindley@google.com>
2020-04-22 02:23:33 +00:00

694 lines
20 KiB
Go

// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package regtest provides an environment for writing regression tests.
package regtest
import (
"bytes"
"context"
"fmt"
"io"
"io/ioutil"
"os"
"os/exec"
"path/filepath"
"regexp"
"runtime/pprof"
"strings"
"sync"
"testing"
"time"
"golang.org/x/tools/internal/jsonrpc2"
"golang.org/x/tools/internal/jsonrpc2/servertest"
"golang.org/x/tools/internal/lsp/cache"
"golang.org/x/tools/internal/lsp/debug"
"golang.org/x/tools/internal/lsp/fake"
"golang.org/x/tools/internal/lsp/lsprpc"
"golang.org/x/tools/internal/lsp/protocol"
)
// EnvMode is a bitmask that defines in which execution environments a test
// should run.
type EnvMode int
const (
// Singleton mode uses a separate cache for each test.
Singleton EnvMode = 1 << iota
// Forwarded forwards connections to an in-process gopls instance.
Forwarded
// SeparateProcess runs a separate gopls process, and forwards connections to
// it.
SeparateProcess
// NormalModes runs tests in all modes.
NormalModes = Singleton | Forwarded
)
// A Runner runs tests in gopls execution environments, as specified by its
// modes. For modes that share state (for example, a shared cache or common
// remote), any tests that execute on the same Runner will share the same
// state.
type Runner struct {
DefaultModes EnvMode
Timeout time.Duration
GoplsPath string
AlwaysPrintLogs bool
PrintGoroutinesOnFailure bool
mu sync.Mutex
ts *servertest.TCPServer
socketDir string
// closers is a queue of clean-up functions to run at the end of the entire
// test suite.
closers []io.Closer
}
// Modes returns the bitmask of environment modes this runner is configured to
// test.
func (r *Runner) Modes() EnvMode {
return r.DefaultModes
}
// getTestServer gets the test server instance to connect to, or creates one if
// it doesn't exist.
func (r *Runner) getTestServer() *servertest.TCPServer {
r.mu.Lock()
defer r.mu.Unlock()
if r.ts == nil {
ctx := context.Background()
ctx = debug.WithInstance(ctx, "", "")
ss := lsprpc.NewStreamServer(cache.New(ctx, nil))
r.ts = servertest.NewTCPServer(context.Background(), ss)
}
return r.ts
}
// runTestAsGoplsEnvvar triggers TestMain to run gopls instead of running
// tests. It's a trick to allow tests to find a binary to use to start a gopls
// subprocess.
const runTestAsGoplsEnvvar = "_GOPLS_TEST_BINARY_RUN_AS_GOPLS"
func (r *Runner) getRemoteSocket(t *testing.T) string {
t.Helper()
r.mu.Lock()
defer r.mu.Unlock()
const daemonFile = "gopls-test-daemon"
if r.socketDir != "" {
return filepath.Join(r.socketDir, daemonFile)
}
if r.GoplsPath == "" {
t.Fatal("cannot run tests with a separate process unless a path to a gopls binary is configured")
}
var err error
r.socketDir, err = ioutil.TempDir("", "gopls-regtests")
if err != nil {
t.Fatalf("creating tempdir: %v", err)
}
socket := filepath.Join(r.socketDir, daemonFile)
args := []string{"serve", "-listen", "unix;" + socket, "-listen.timeout", "10s"}
cmd := exec.Command(r.GoplsPath, args...)
cmd.Env = append(os.Environ(), runTestAsGoplsEnvvar+"=true")
var stderr bytes.Buffer
cmd.Stderr = &stderr
go func() {
if err := cmd.Run(); err != nil {
panic(fmt.Sprintf("error running external gopls: %v\nstderr:\n%s", err, stderr.String()))
}
}()
return socket
}
// AddCloser schedules a closer to be closed at the end of the test run. This
// is useful for Windows in particular, as
func (r *Runner) AddCloser(closer io.Closer) {
r.mu.Lock()
defer r.mu.Unlock()
r.closers = append(r.closers, closer)
}
// Close cleans up resource that have been allocated to this workspace.
func (r *Runner) Close() error {
r.mu.Lock()
defer r.mu.Unlock()
var errmsgs []string
if r.ts != nil {
if err := r.ts.Close(); err != nil {
errmsgs = append(errmsgs, err.Error())
}
}
if r.socketDir != "" {
if err := os.RemoveAll(r.socketDir); err != nil {
errmsgs = append(errmsgs, err.Error())
}
}
for _, closer := range r.closers {
if err := closer.Close(); err != nil {
errmsgs = append(errmsgs, err.Error())
}
}
if len(errmsgs) > 0 {
return fmt.Errorf("errors closing the test runner:\n\t%s", strings.Join(errmsgs, "\n\t"))
}
return nil
}
type runConfig struct {
modes EnvMode
proxyTxt string
timeout time.Duration
env []string
}
func (r *Runner) defaultConfig() *runConfig {
return &runConfig{
modes: r.DefaultModes,
timeout: r.Timeout,
}
}
// A RunOption augments the behavior of the test runner.
type RunOption interface {
set(*runConfig)
}
type optionSetter func(*runConfig)
func (f optionSetter) set(opts *runConfig) {
f(opts)
}
// WithTimeout configures a custom timeout for this test run.
func WithTimeout(d time.Duration) RunOption {
return optionSetter(func(opts *runConfig) {
opts.timeout = d
})
}
// WithProxy configures a file proxy using the given txtar-encoded string.
func WithProxy(txt string) RunOption {
return optionSetter(func(opts *runConfig) {
opts.proxyTxt = txt
})
}
// WithModes configures the execution modes that the test should run in.
func WithModes(modes EnvMode) RunOption {
return optionSetter(func(opts *runConfig) {
opts.modes = modes
})
}
func WithEnv(env ...string) RunOption {
return optionSetter(func(opts *runConfig) {
opts.env = env
})
}
// Run executes the test function in the default configured gopls execution
// modes. For each a test run, a new workspace is created containing the
// un-txtared files specified by filedata.
func (r *Runner) Run(t *testing.T, filedata string, test func(t *testing.T, e *Env), opts ...RunOption) {
t.Helper()
config := r.defaultConfig()
for _, opt := range opts {
opt.set(config)
}
tests := []struct {
name string
mode EnvMode
getServer func(context.Context, *testing.T) jsonrpc2.StreamServer
}{
{"singleton", Singleton, singletonEnv},
{"forwarded", Forwarded, r.forwardedEnv},
{"separate_process", SeparateProcess, r.separateProcessEnv},
}
for _, tc := range tests {
tc := tc
if config.modes&tc.mode == 0 {
continue
}
t.Run(tc.name, func(t *testing.T) {
t.Helper()
ctx, cancel := context.WithTimeout(context.Background(), config.timeout)
defer cancel()
ctx = debug.WithInstance(ctx, "", "")
ws, err := fake.NewWorkspace("regtest", filedata, config.proxyTxt, config.env...)
if err != nil {
t.Fatal(err)
}
// Deferring the closure of ws until the end of the entire test suite
// has, in testing, given the LSP server time to properly shutdown and
// release any file locks held in workspace, which is a problem on
// Windows. This may still be flaky however, and in the future we need a
// better solution to ensure that all Go processes started by gopls have
// exited before we clean up.
r.AddCloser(ws)
ss := tc.getServer(ctx, t)
ls := &loggingServer{delegate: ss}
ts := servertest.NewPipeServer(ctx, ls)
defer func() {
ts.Close()
}()
env := NewEnv(ctx, t, ws, ts)
defer func() {
if t.Failed() && r.PrintGoroutinesOnFailure {
pprof.Lookup("goroutine").WriteTo(os.Stderr, 1)
}
if t.Failed() || r.AlwaysPrintLogs {
ls.printBuffers(t.Name(), os.Stderr)
}
if err := env.E.Shutdown(ctx); err != nil {
panic(err)
}
}()
test(t, env)
})
}
}
type loggingServer struct {
delegate jsonrpc2.StreamServer
mu sync.Mutex
buffers []*bytes.Buffer
}
func (s *loggingServer) ServeStream(ctx context.Context, stream jsonrpc2.Stream) error {
s.mu.Lock()
var buf bytes.Buffer
s.buffers = append(s.buffers, &buf)
s.mu.Unlock()
logStream := protocol.LoggingStream(stream, &buf)
return s.delegate.ServeStream(ctx, logStream)
}
func (s *loggingServer) printBuffers(testname string, w io.Writer) {
s.mu.Lock()
defer s.mu.Unlock()
for i, buf := range s.buffers {
fmt.Fprintf(os.Stderr, "#### Start Gopls Test Logs %d of %d for %q\n", i+1, len(s.buffers), testname)
io.Copy(w, buf)
fmt.Fprintf(os.Stderr, "#### End Gopls Test Logs %d of %d for %q\n", i+1, len(s.buffers), testname)
}
}
func singletonEnv(ctx context.Context, t *testing.T) jsonrpc2.StreamServer {
return lsprpc.NewStreamServer(cache.New(ctx, nil))
}
func (r *Runner) forwardedEnv(ctx context.Context, t *testing.T) jsonrpc2.StreamServer {
ts := r.getTestServer()
return lsprpc.NewForwarder("tcp", ts.Addr)
}
func (r *Runner) separateProcessEnv(ctx context.Context, t *testing.T) jsonrpc2.StreamServer {
// TODO(rfindley): can we use the autostart behavior here, instead of
// pre-starting the remote?
socket := r.getRemoteSocket(t)
return lsprpc.NewForwarder("unix", socket)
}
// Env holds an initialized fake Editor, Workspace, and Server, which may be
// used for writing tests. It also provides adapter methods that call t.Fatal
// on any error, so that tests for the happy path may be written without
// checking errors.
type Env struct {
T *testing.T
Ctx context.Context
// Most tests should not need to access the workspace, editor, server, or
// connection, but they are available if needed.
W *fake.Workspace
E *fake.Editor
Server servertest.Connector
Conn *jsonrpc2.Conn
// mu guards the fields below, for the purpose of checking conditions on
// every change to diagnostics.
mu sync.Mutex
// For simplicity, each waiter gets a unique ID.
nextWaiterID int
state State
waiters map[int]*condition
}
// State encapsulates the server state TODO: explain more
type State struct {
// diagnostics are a map of relative path->diagnostics params
diagnostics map[string]*protocol.PublishDiagnosticsParams
logs []*protocol.LogMessageParams
}
func (s State) String() string {
var b strings.Builder
b.WriteString("#### log messages (see RPC logs for full text):\n")
for _, msg := range s.logs {
summary := fmt.Sprintf("%v: %q", msg.Type, msg.Message)
if len(summary) > 60 {
summary = summary[:57] + "..."
}
// Some logs are quite long, and since they should be reproduced in the RPC
// logs on any failure we include here just a short summary.
fmt.Fprint(&b, "\t"+summary+"\n")
}
b.WriteString("\n")
b.WriteString("#### diagnostics:\n")
for name, params := range s.diagnostics {
fmt.Fprintf(&b, "\t%s (version %d):\n", name, int(params.Version))
for _, d := range params.Diagnostics {
fmt.Fprintf(&b, "\t\t(%d, %d): %s\n", int(d.Range.Start.Line), int(d.Range.Start.Character), d.Message)
}
}
return b.String()
}
// A condition is satisfied when all expectations are simultaneously
// met. At that point, the 'met' channel is closed. On any failure, err is set
// and the failed channel is closed.
type condition struct {
expectations []Expectation
verdict chan Verdict
}
// NewEnv creates a new test environment using the given workspace and gopls
// server.
func NewEnv(ctx context.Context, t *testing.T, ws *fake.Workspace, ts servertest.Connector) *Env {
t.Helper()
conn := ts.Connect(ctx)
editor, err := fake.NewConnectedEditor(ctx, ws, conn)
if err != nil {
t.Fatal(err)
}
env := &Env{
T: t,
Ctx: ctx,
W: ws,
E: editor,
Server: ts,
Conn: conn,
state: State{
diagnostics: make(map[string]*protocol.PublishDiagnosticsParams),
},
waiters: make(map[int]*condition),
}
env.E.Client().OnDiagnostics(env.onDiagnostics)
env.E.Client().OnLogMessage(env.onLogMessage)
return env
}
func (e *Env) onDiagnostics(_ context.Context, d *protocol.PublishDiagnosticsParams) error {
e.mu.Lock()
defer e.mu.Unlock()
pth := e.W.URIToPath(d.URI)
e.state.diagnostics[pth] = d
e.checkConditionsLocked()
return nil
}
func (e *Env) onLogMessage(_ context.Context, m *protocol.LogMessageParams) error {
e.mu.Lock()
defer e.mu.Unlock()
e.state.logs = append(e.state.logs, m)
e.checkConditionsLocked()
return nil
}
func (e *Env) checkConditionsLocked() {
for id, condition := range e.waiters {
if v, _, _ := checkExpectations(e.state, condition.expectations); v != Unmet {
delete(e.waiters, id)
condition.verdict <- v
}
}
}
// ExpectNow asserts that the current state of the editor matches the given
// expectations.
//
// It can be used together with Env.Await to allow waiting on
// simple expectations, followed by more detailed expectations tested by
// ExpectNow. For example:
//
// env.RegexpReplace("foo.go", "a", "x")
// env.Await(env.AnyDiagnosticAtCurrentVersion("foo.go"))
// env.ExpectNow(env.DiagnosticAtRegexp("foo.go", "x"))
//
// This has the advantage of not timing out if the diagnostic received for
// "foo.go" does not match the expectation: instead it fails early.
func (e *Env) ExpectNow(expectations ...Expectation) {
e.T.Helper()
e.mu.Lock()
defer e.mu.Unlock()
if verdict, summary, _ := checkExpectations(e.state, expectations); verdict != Met {
e.T.Fatalf("expectations unmet:\n%s\ncurrent state:\n%v", summary, e.state)
}
}
// checkExpectations reports whether s meets all expectations.
func checkExpectations(s State, expectations []Expectation) (Verdict, string, []interface{}) {
finalVerdict := Met
var metBy []interface{}
var summary strings.Builder
for _, e := range expectations {
v, mb := e.Check(s)
if v == Met {
metBy = append(metBy, mb)
}
if v > finalVerdict {
finalVerdict = v
}
summary.WriteString(fmt.Sprintf("\t%v: %s\n", v, e.Description()))
}
return finalVerdict, summary.String(), metBy
}
// An Expectation asserts that the state of the editor at a point in time
// matches an expected condition. This is used for signaling in tests when
// certain conditions in the editor are met.
type Expectation interface {
// Check determines whether the state of the editor satisfies the
// expectation, returning the results that met the condition.
Check(State) (Verdict, interface{})
// Description is a human-readable description of the expectation.
Description() string
}
// A Verdict is the result of checking an expectation against the current
// editor state.
type Verdict int
// Order matters for the following constants: verdicts are sorted in order of
// decisiveness.
const (
// Met indicates that an expectation is satisfied by the current state.
Met Verdict = iota
// Unmet indicates that an expectation is not currently met, but could be met
// in the future.
Unmet
// Unmeetable indicates that an expectation cannot be satisfied in the
// future.
Unmeetable
)
func (v Verdict) String() string {
switch v {
case Met:
return "Met"
case Unmet:
return "Unmet"
case Unmeetable:
return "Unmeetable"
}
return fmt.Sprintf("unrecognized verdict %d", v)
}
// LogExpectation is an expectation on the log messages received by the editor
// from gopls.
type LogExpectation struct {
check func([]*protocol.LogMessageParams) (Verdict, interface{})
description string
}
// Check implements the Expectation interface.
func (e LogExpectation) Check(s State) (Verdict, interface{}) {
return e.check(s.logs)
}
// Description implements the Expectation interface.
func (e LogExpectation) Description() string {
return e.description
}
// NoErrorLogs asserts that the client has not received any log messages of
// error severity.
func NoErrorLogs() LogExpectation {
check := func(msgs []*protocol.LogMessageParams) (Verdict, interface{}) {
for _, msg := range msgs {
if msg.Type == protocol.Error {
return Unmeetable, nil
}
}
return Met, nil
}
return LogExpectation{
check: check,
description: "no errors have been logged",
}
}
// LogMatching asserts that the client has received a log message
// matching of type typ matching the regexp re.
func LogMatching(typ protocol.MessageType, re string) LogExpectation {
rec, err := regexp.Compile(re)
if err != nil {
panic(err)
}
check := func(msgs []*protocol.LogMessageParams) (Verdict, interface{}) {
for _, msg := range msgs {
if msg.Type == typ && rec.Match([]byte(msg.Message)) {
return Met, msg
}
}
return Unmet, nil
}
return LogExpectation{
check: check,
description: fmt.Sprintf("log message matching %q", re),
}
}
// A DiagnosticExpectation is a condition that must be met by the current set
// of diagnostics for a file.
type DiagnosticExpectation struct {
// IsMet determines whether the diagnostics for this file version satisfy our
// expectation.
isMet func(*protocol.PublishDiagnosticsParams) bool
// Description is a human-readable description of the diagnostic expectation.
description string
// Path is the workspace-relative path to the file being asserted on.
path string
}
// Check implements the Expectation interface.
func (e DiagnosticExpectation) Check(s State) (Verdict, interface{}) {
if diags, ok := s.diagnostics[e.path]; ok && e.isMet(diags) {
return Met, diags
}
return Unmet, nil
}
// Description implements the Expectation interface.
func (e DiagnosticExpectation) Description() string {
return fmt.Sprintf("%s: %s", e.path, e.description)
}
// EmptyDiagnostics asserts that diagnostics are empty for the
// workspace-relative path name.
func EmptyDiagnostics(name string) DiagnosticExpectation {
isMet := func(diags *protocol.PublishDiagnosticsParams) bool {
return len(diags.Diagnostics) == 0
}
return DiagnosticExpectation{
isMet: isMet,
description: "empty diagnostics",
path: name,
}
}
// AnyDiagnosticAtCurrentVersion asserts that there is a diagnostic report for
// the current edited version of the buffer corresponding to the given
// workspace-relative pathname.
func (e *Env) AnyDiagnosticAtCurrentVersion(name string) DiagnosticExpectation {
version := e.E.BufferVersion(name)
isMet := func(diags *protocol.PublishDiagnosticsParams) bool {
return int(diags.Version) == version
}
return DiagnosticExpectation{
isMet: isMet,
description: fmt.Sprintf("any diagnostics at version %d", version),
path: name,
}
}
// DiagnosticAtRegexp expects that there is a diagnostic entry at the start
// position matching the regexp search string re in the buffer specified by
// name. Note that this currently ignores the end position.
func (e *Env) DiagnosticAtRegexp(name, re string) DiagnosticExpectation {
pos := e.RegexpSearch(name, re)
expectation := DiagnosticAt(name, pos.Line, pos.Column)
expectation.description += fmt.Sprintf(" (location of %q)", re)
return expectation
}
// DiagnosticAt asserts that there is a diagnostic entry at the position
// specified by line and col, for the workspace-relative path name.
func DiagnosticAt(name string, line, col int) DiagnosticExpectation {
isMet := func(diags *protocol.PublishDiagnosticsParams) bool {
for _, d := range diags.Diagnostics {
if d.Range.Start.Line == float64(line) && d.Range.Start.Character == float64(col) {
return true
}
}
return false
}
return DiagnosticExpectation{
isMet: isMet,
description: fmt.Sprintf("diagnostic at {line:%d, column:%d}", line, col),
path: name,
}
}
// Await waits for all expectations to simultaneously be met. It should only be
// called from the main test goroutine.
func (e *Env) Await(expectations ...Expectation) []interface{} {
e.T.Helper()
e.mu.Lock()
// Before adding the waiter, we check if the condition is currently met or
// failed to avoid a race where the condition was realized before Await was
// called.
switch verdict, summary, metBy := checkExpectations(e.state, expectations); verdict {
case Met:
return metBy
case Unmeetable:
e.mu.Unlock()
e.T.Fatalf("unmeetable expectations:\n%s\nstate:\n%v", summary, e.state)
}
cond := &condition{
expectations: expectations,
verdict: make(chan Verdict),
}
e.waiters[e.nextWaiterID] = cond
e.nextWaiterID++
e.mu.Unlock()
var err error
select {
case <-e.Ctx.Done():
err = e.Ctx.Err()
case v := <-cond.verdict:
if v != Met {
err = fmt.Errorf("condition has final verdict %v", v)
}
}
e.mu.Lock()
defer e.mu.Unlock()
_, summary, metBy := checkExpectations(e.state, expectations)
// Debugging an unmet expectation can be tricky, so we put some effort into
// nicely formatting the failure.
if err != nil {
e.T.Fatalf("waiting on:\n%s\nerr:%v\nstate:\n%v", err, summary, e.state)
}
return metBy
}