1
0
mirror of https://github.com/golang/go synced 2024-11-20 03:04:40 -07:00
go/src/runtime/runtime2.go
Austin Clements 3c0fee10db cmd/6g, liblink, runtime: support saving base pointers
This adds a "framepointer" GOEXPERIMENT that that makes the amd64
toolchain maintain base pointer chains in the same way that gcc
-fno-omit-frame-pointer does.  Go doesn't use these saved base
pointers, but this does enable external tools like Linux perf and
VTune to unwind Go stacks when collecting system-wide profiles.

This requires support in the compilers to not clobber BP, support in
liblink for generating the BP-saving function prologue and unwinding
epilogue, and support in the runtime to save BPs across preemption, to
skip saved BPs during stack unwinding and, and to adjust saved BPs
during stack moving.

As with other GOEXPERIMENTs, everything from the toolchain to the
runtime must be compiled with this experiment enabled.  To do this,
run make.bash (or all.bash) with GOEXPERIMENT=framepointer.

Change-Id: I4024853beefb9539949e5ca381adfdd9cfada544
Reviewed-on: https://go-review.googlesource.com/2992
Reviewed-by: Russ Cox <rsc@golang.org>
2015-02-02 19:36:05 +00:00

615 lines
19 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
/*
* defined constants
*/
const (
// G status
//
// If you add to this list, add to the list
// of "okay during garbage collection" status
// in mgc0.c too.
_Gidle = iota // 0
_Grunnable // 1 runnable and on a run queue
_Grunning // 2
_Gsyscall // 3
_Gwaiting // 4
_Gmoribund_unused // 5 currently unused, but hardcoded in gdb scripts
_Gdead // 6
_Genqueue // 7 Only the Gscanenqueue is used.
_Gcopystack // 8 in this state when newstack is moving the stack
// the following encode that the GC is scanning the stack and what to do when it is done
_Gscan = 0x1000 // atomicstatus&~Gscan = the non-scan state,
// _Gscanidle = _Gscan + _Gidle, // Not used. Gidle only used with newly malloced gs
_Gscanrunnable = _Gscan + _Grunnable // 0x1001 When scanning complets make Grunnable (it is already on run queue)
_Gscanrunning = _Gscan + _Grunning // 0x1002 Used to tell preemption newstack routine to scan preempted stack.
_Gscansyscall = _Gscan + _Gsyscall // 0x1003 When scanning completes make is Gsyscall
_Gscanwaiting = _Gscan + _Gwaiting // 0x1004 When scanning completes make it Gwaiting
// _Gscanmoribund_unused, // not possible
// _Gscandead, // not possible
_Gscanenqueue = _Gscan + _Genqueue // When scanning completes make it Grunnable and put on runqueue
)
const (
// P status
_Pidle = iota
_Prunning
_Psyscall
_Pgcstop
_Pdead
)
// The next line makes 'go generate' write the zgen_*.go files with
// per-OS and per-arch information, including constants
// named goos_$GOOS and goarch_$GOARCH for every
// known GOOS and GOARCH. The constant is 1 on the
// current system, 0 otherwise; multiplying by them is
// useful for defining GOOS- or GOARCH-specific constants.
//go:generate go run gengoos.go
type mutex struct {
// Futex-based impl treats it as uint32 key,
// while sema-based impl as M* waitm.
// Used to be a union, but unions break precise GC.
key uintptr
}
type note struct {
// Futex-based impl treats it as uint32 key,
// while sema-based impl as M* waitm.
// Used to be a union, but unions break precise GC.
key uintptr
}
type _string struct {
str *byte
len int
}
type funcval struct {
fn uintptr
// variable-size, fn-specific data here
}
type iface struct {
tab *itab
data unsafe.Pointer
}
type eface struct {
_type *_type
data unsafe.Pointer
}
type slice struct {
array *byte // actual data
len uint // number of elements
cap uint // allocated number of elements
}
// A guintptr holds a goroutine pointer, but typed as a uintptr
// to bypass write barriers. It is used in the Gobuf goroutine state.
//
// The Gobuf.g goroutine pointer is almost always updated by assembly code.
// In one of the few places it is updated by Go code - func save - it must be
// treated as a uintptr to avoid a write barrier being emitted at a bad time.
// Instead of figuring out how to emit the write barriers missing in the
// assembly manipulation, we change the type of the field to uintptr,
// so that it does not require write barriers at all.
//
// Goroutine structs are published in the allg list and never freed.
// That will keep the goroutine structs from being collected.
// There is never a time that Gobuf.g's contain the only references
// to a goroutine: the publishing of the goroutine in allg comes first.
// Goroutine pointers are also kept in non-GC-visible places like TLS,
// so I can't see them ever moving. If we did want to start moving data
// in the GC, we'd need to allocate the goroutine structs from an
// alternate arena. Using guintptr doesn't make that problem any worse.
type guintptr uintptr
func (gp guintptr) ptr() *g {
return (*g)(unsafe.Pointer(gp))
}
type gobuf struct {
// The offsets of sp, pc, and g are known to (hard-coded in) libmach.
sp uintptr
pc uintptr
g guintptr
ctxt unsafe.Pointer // this has to be a pointer so that gc scans it
ret uintreg
lr uintptr
bp uintptr // for GOEXPERIMENT=framepointer
}
// Known to compiler.
// Changes here must also be made in src/cmd/gc/select.c's selecttype.
type sudog struct {
g *g
selectdone *uint32
next *sudog
prev *sudog
elem unsafe.Pointer // data element
releasetime int64
nrelease int32 // -1 for acquire
waitlink *sudog // g.waiting list
}
type gcstats struct {
// the struct must consist of only uint64's,
// because it is casted to uint64[].
nhandoff uint64
nhandoffcnt uint64
nprocyield uint64
nosyield uint64
nsleep uint64
}
type libcall struct {
fn uintptr
n uintptr // number of parameters
args uintptr // parameters
r1 uintptr // return values
r2 uintptr
err uintptr // error number
}
// describes how to handle callback
type wincallbackcontext struct {
gobody unsafe.Pointer // go function to call
argsize uintptr // callback arguments size (in bytes)
restorestack uintptr // adjust stack on return by (in bytes) (386 only)
cleanstack bool
}
// Stack describes a Go execution stack.
// The bounds of the stack are exactly [lo, hi),
// with no implicit data structures on either side.
type stack struct {
lo uintptr
hi uintptr
}
type g struct {
// Stack parameters.
// stack describes the actual stack memory: [stack.lo, stack.hi).
// stackguard0 is the stack pointer compared in the Go stack growth prologue.
// It is stack.lo+StackGuard normally, but can be StackPreempt to trigger a preemption.
// stackguard1 is the stack pointer compared in the C stack growth prologue.
// It is stack.lo+StackGuard on g0 and gsignal stacks.
// It is ~0 on other goroutine stacks, to trigger a call to morestackc (and crash).
stack stack // offset known to runtime/cgo
stackguard0 uintptr // offset known to liblink
stackguard1 uintptr // offset known to liblink
_panic *_panic // innermost panic - offset known to liblink
_defer *_defer // innermost defer
sched gobuf
syscallsp uintptr // if status==gsyscall, syscallsp = sched.sp to use during gc
syscallpc uintptr // if status==gsyscall, syscallpc = sched.pc to use during gc
param unsafe.Pointer // passed parameter on wakeup
atomicstatus uint32
goid int64
waitsince int64 // approx time when the g become blocked
waitreason string // if status==gwaiting
schedlink *g
issystem bool // do not output in stack dump, ignore in deadlock detector
preempt bool // preemption signal, duplicates stackguard0 = stackpreempt
paniconfault bool // panic (instead of crash) on unexpected fault address
preemptscan bool // preempted g does scan for gc
gcworkdone bool // debug: cleared at begining of gc work phase cycle, set by gcphasework, tested at end of cycle
gcscanvalid bool // false at start of gc cycle, true if G has not run since last scan
throwsplit bool // must not split stack
raceignore int8 // ignore race detection events
m *m // for debuggers, but offset not hard-coded
lockedm *m
sig uint32
writebuf []byte
sigcode0 uintptr
sigcode1 uintptr
sigpc uintptr
gopc uintptr // pc of go statement that created this goroutine
startpc uintptr // pc of goroutine function
racectx uintptr
waiting *sudog // sudog structures this g is waiting on (that have a valid elem ptr)
}
type mts struct {
tv_sec int64
tv_nsec int64
}
type mscratch struct {
v [6]uintptr
}
type m struct {
g0 *g // goroutine with scheduling stack
morebuf gobuf // gobuf arg to morestack
// Fields not known to debuggers.
procid uint64 // for debuggers, but offset not hard-coded
gsignal *g // signal-handling g
tls [4]uintptr // thread-local storage (for x86 extern register)
mstartfn unsafe.Pointer // todo go func()
curg *g // current running goroutine
caughtsig *g // goroutine running during fatal signal
p *p // attached p for executing go code (nil if not executing go code)
nextp *p
id int32
mallocing int32
throwing int32
preemptoff string // if != "", keep curg running on this m
locks int32
softfloat int32
dying int32
profilehz int32
helpgc int32
spinning bool // m is out of work and is actively looking for work
blocked bool // m is blocked on a note
inwb bool // m is executing a write barrier
printlock int8
fastrand uint32
ncgocall uint64 // number of cgo calls in total
ncgo int32 // number of cgo calls currently in progress
cgomal *cgomal
park note
alllink *m // on allm
schedlink *m
machport uint32 // return address for mach ipc (os x)
mcache *mcache
lockedg *g
createstack [32]uintptr // stack that created this thread.
freglo [16]uint32 // d[i] lsb and f[i]
freghi [16]uint32 // d[i] msb and f[i+16]
fflag uint32 // floating point compare flags
locked uint32 // tracking for lockosthread
nextwaitm *m // next m waiting for lock
waitsema uintptr // semaphore for parking on locks
waitsemacount uint32
waitsemalock uint32
gcstats gcstats
needextram bool
traceback uint8
waitunlockf unsafe.Pointer // todo go func(*g, unsafe.pointer) bool
waitlock unsafe.Pointer
waittraceev byte
syscalltick uint32
//#ifdef GOOS_windows
thread uintptr // thread handle
// these are here because they are too large to be on the stack
// of low-level NOSPLIT functions.
libcall libcall
libcallpc uintptr // for cpu profiler
libcallsp uintptr
libcallg *g
//#endif
//#ifdef GOOS_solaris
perrno *int32 // pointer to tls errno
// these are here because they are too large to be on the stack
// of low-level NOSPLIT functions.
//LibCall libcall;
ts mts
scratch mscratch
//#endif
//#ifdef GOOS_plan9
notesig *int8
errstr *byte
//#endif
}
type p struct {
lock mutex
id int32
status uint32 // one of pidle/prunning/...
link *p
schedtick uint32 // incremented on every scheduler call
syscalltick uint32 // incremented on every system call
m *m // back-link to associated m (nil if idle)
mcache *mcache
deferpool [5]*_defer // pool of available defer structs of different sizes (see panic.c)
// Cache of goroutine ids, amortizes accesses to runtime·sched.goidgen.
goidcache uint64
goidcacheend uint64
// Queue of runnable goroutines.
runqhead uint32
runqtail uint32
runq [256]*g
// Available G's (status == Gdead)
gfree *g
gfreecnt int32
tracebuf *traceBuf
pad [64]byte
}
const (
// The max value of GOMAXPROCS.
// There are no fundamental restrictions on the value.
_MaxGomaxprocs = 1 << 8
)
type schedt struct {
lock mutex
goidgen uint64
midle *m // idle m's waiting for work
nmidle int32 // number of idle m's waiting for work
nmidlelocked int32 // number of locked m's waiting for work
mcount int32 // number of m's that have been created
maxmcount int32 // maximum number of m's allowed (or die)
pidle *p // idle p's
npidle uint32
nmspinning uint32
// Global runnable queue.
runqhead *g
runqtail *g
runqsize int32
// Global cache of dead G's.
gflock mutex
gfree *g
ngfree int32
gcwaiting uint32 // gc is waiting to run
stopwait int32
stopnote note
sysmonwait uint32
sysmonnote note
lastpoll uint64
profilehz int32 // cpu profiling rate
}
// The m->locked word holds two pieces of state counting active calls to LockOSThread/lockOSThread.
// The low bit (LockExternal) is a boolean reporting whether any LockOSThread call is active.
// External locks are not recursive; a second lock is silently ignored.
// The upper bits of m->lockedcount record the nesting depth of calls to lockOSThread
// (counting up by LockInternal), popped by unlockOSThread (counting down by LockInternal).
// Internal locks can be recursive. For instance, a lock for cgo can occur while the main
// goroutine is holding the lock during the initialization phase.
const (
_LockExternal = 1
_LockInternal = 2
)
type sigtabtt struct {
flags int32
name *int8
}
const (
_SigNotify = 1 << 0 // let signal.Notify have signal, even if from kernel
_SigKill = 1 << 1 // if signal.Notify doesn't take it, exit quietly
_SigThrow = 1 << 2 // if signal.Notify doesn't take it, exit loudly
_SigPanic = 1 << 3 // if the signal is from the kernel, panic
_SigDefault = 1 << 4 // if the signal isn't explicitly requested, don't monitor it
_SigHandling = 1 << 5 // our signal handler is registered
_SigIgnored = 1 << 6 // the signal was ignored before we registered for it
_SigGoExit = 1 << 7 // cause all runtime procs to exit (only used on Plan 9).
_SigSetStack = 1 << 8 // add SA_ONSTACK to libc handler
)
// Layout of in-memory per-function information prepared by linker
// See http://golang.org/s/go12symtab.
// Keep in sync with linker and with ../../libmach/sym.c
// and with package debug/gosym and with symtab.go in package runtime.
type _func struct {
entry uintptr // start pc
nameoff int32 // function name
args int32 // in/out args size
frame int32 // legacy frame size; use pcsp if possible
pcsp int32
pcfile int32
pcln int32
npcdata int32
nfuncdata int32
}
// layout of Itab known to compilers
// allocated in non-garbage-collected memory
type itab struct {
inter *interfacetype
_type *_type
link *itab
bad int32
unused int32
fun [1]uintptr // variable sized
}
// Lock-free stack node.
// // Also known to export_test.go.
type lfnode struct {
next uint64
pushcnt uintptr
}
// Track memory allocated by code not written in Go during a cgo call,
// so that the garbage collector can see them.
type cgomal struct {
next *cgomal
alloc unsafe.Pointer
}
// Indicates to write barrier and sychronization task to preform.
const (
_GCoff = iota // GC not running, write barrier disabled
_GCquiesce // unused state
_GCstw // unused state
_GCscan // GC collecting roots into workbufs, write barrier disabled
_GCmark // GC marking from workbufs, write barrier ENABLED
_GCmarktermination // GC mark termination: allocate black, P's help GC, write barrier ENABLED
_GCsweep // GC mark completed; sweeping in background, write barrier disabled
)
type forcegcstate struct {
lock mutex
g *g
idle uint32
}
var gcphase uint32
/*
* known to compiler
*/
const (
_Structrnd = regSize
)
// startup_random_data holds random bytes initialized at startup. These come from
// the ELF AT_RANDOM auxiliary vector (vdso_linux_amd64.go or os_linux_386.go).
var startupRandomData []byte
// extendRandom extends the random numbers in r[:n] to the whole slice r.
// Treats n<0 as n==0.
func extendRandom(r []byte, n int) {
if n < 0 {
n = 0
}
for n < len(r) {
// Extend random bits using hash function & time seed
w := n
if w > 16 {
w = 16
}
h := memhash(unsafe.Pointer(&r[n-w]), uintptr(nanotime()), uintptr(w))
for i := 0; i < ptrSize && n < len(r); i++ {
r[n] = byte(h)
n++
h >>= 8
}
}
}
/*
* deferred subroutine calls
*/
type _defer struct {
siz int32
started bool
sp uintptr // sp at time of defer
pc uintptr
fn *funcval
_panic *_panic // panic that is running defer
link *_defer
}
/*
* panics
*/
type _panic struct {
argp unsafe.Pointer // pointer to arguments of deferred call run during panic; cannot move - known to liblink
arg interface{} // argument to panic
link *_panic // link to earlier panic
recovered bool // whether this panic is over
aborted bool // the panic was aborted
}
/*
* stack traces
*/
type stkframe struct {
fn *_func // function being run
pc uintptr // program counter within fn
continpc uintptr // program counter where execution can continue, or 0 if not
lr uintptr // program counter at caller aka link register
sp uintptr // stack pointer at pc
fp uintptr // stack pointer at caller aka frame pointer
varp uintptr // top of local variables
argp uintptr // pointer to function arguments
arglen uintptr // number of bytes at argp
argmap *bitvector // force use of this argmap
}
const (
_TraceRuntimeFrames = 1 << 0 // include frames for internal runtime functions.
_TraceTrap = 1 << 1 // the initial PC, SP are from a trap, not a return PC from a call
)
const (
// The maximum number of frames we print for a traceback
_TracebackMaxFrames = 100
)
var (
emptystring string
allg **g
allglen uintptr
lastg *g
allm *m
allp [_MaxGomaxprocs + 1]*p
gomaxprocs int32
needextram uint32
panicking uint32
goos *int8
ncpu int32
iscgo bool
cpuid_ecx uint32
cpuid_edx uint32
signote note
forcegc forcegcstate
sched schedt
newprocs int32
)
/*
* mutual exclusion locks. in the uncontended case,
* as fast as spin locks (just a few user-level instructions),
* but on the contention path they sleep in the kernel.
* a zeroed Mutex is unlocked (no need to initialize each lock).
*/
/*
* sleep and wakeup on one-time events.
* before any calls to notesleep or notewakeup,
* must call noteclear to initialize the Note.
* then, exactly one thread can call notesleep
* and exactly one thread can call notewakeup (once).
* once notewakeup has been called, the notesleep
* will return. future notesleep will return immediately.
* subsequent noteclear must be called only after
* previous notesleep has returned, e.g. it's disallowed
* to call noteclear straight after notewakeup.
*
* notetsleep is like notesleep but wakes up after
* a given number of nanoseconds even if the event
* has not yet happened. if a goroutine uses notetsleep to
* wake up early, it must wait to call noteclear until it
* can be sure that no other goroutine is calling
* notewakeup.
*
* notesleep/notetsleep are generally called on g0,
* notetsleepg is similar to notetsleep but is called on user g.
*/
// bool runtime·notetsleep(Note*, int64); // false - timeout
// bool runtime·notetsleepg(Note*, int64); // false - timeout
/*
* Lock-free stack.
* Initialize uint64 head to 0, compare with 0 to test for emptiness.
* The stack does not keep pointers to nodes,
* so they can be garbage collected if there are no other pointers to nodes.
*/
// for mmap, we only pass the lower 32 bits of file offset to the
// assembly routine; the higher bits (if required), should be provided
// by the assembly routine as 0.