1
0
mirror of https://github.com/golang/go synced 2024-10-04 06:21:23 -06:00
go/src/pkg/runtime/mgc0.c
Dmitriy Vyukov e48751e217 runtime: increase page size to 8K
Tcmalloc uses 8K, 32K and 64K pages, and in custom setups 256K pages.
Only Chromium uses 4K pages today (in "slow but small" configuration).
The general tendency is to increase page size, because it reduces
metadata size and DTLB pressure.
This change reduces GC pause by ~10% and slightly improves other metrics.

json-1
allocated                 8037492      8038689      +0.01%
allocs                     105762       105573      -0.18%
cputime                 158400000    155800000      -1.64%
gc-pause-one              4412234      4135702      -6.27%
gc-pause-total            2647340      2398707      -9.39%
rss                      54923264     54525952      -0.72%
sys-gc                    3952624      3928048      -0.62%
sys-heap                 46399488     46006272      -0.85%
sys-other                 5597504      5290304      -5.49%
sys-stack                  393216       393216      +0.00%
sys-total                56342832     55617840      -1.29%
time                    158478890    156046916      -1.53%
virtual-mem             256548864    256593920      +0.02%

garbage-1
allocated                 2991113      2986259      -0.16%
allocs                      62844        62652      -0.31%
cputime                  16330000     15860000      -2.88%
gc-pause-one            789108229    725555211      -8.05%
gc-pause-total            3945541      3627776      -8.05%
rss                    1143660544   1132253184      -1.00%
sys-gc                   65609600     65806208      +0.30%
sys-heap               1032388608   1035599872      +0.31%
sys-other                37501632     22777664     -39.26%
sys-stack                 8650752      8781824      +1.52%
sys-total              1144150592   1132965568      -0.98%
time                     16364602     15891994      -2.89%
virtual-mem            1327296512   1313746944      -1.02%

This is the exact reincarnation of already LGTMed:
https://golang.org/cl/45770044
which must not break darwin/freebsd after:
https://golang.org/cl/56630043
TBR=iant

LGTM=khr, iant
R=iant, khr
CC=golang-codereviews
https://golang.org/cl/58230043
2014-01-30 13:28:19 +04:00

2573 lines
65 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Garbage collector.
#include "runtime.h"
#include "arch_GOARCH.h"
#include "malloc.h"
#include "stack.h"
#include "mgc0.h"
#include "race.h"
#include "type.h"
#include "typekind.h"
#include "funcdata.h"
#include "../../cmd/ld/textflag.h"
enum {
Debug = 0,
CollectStats = 0,
ScanStackByFrames = 1,
IgnorePreciseGC = 0,
// Four bits per word (see #defines below).
wordsPerBitmapWord = sizeof(void*)*8/4,
bitShift = sizeof(void*)*8/4,
WorkbufSize = 16*1024,
RootBlockSize = 4*1024,
FinBlockSize = 4*1024,
handoffThreshold = 4,
IntermediateBufferCapacity = 64,
// Bits in type information
PRECISE = 1,
LOOP = 2,
PC_BITS = PRECISE | LOOP,
// Pointer map
BitsPerPointer = 2,
BitsNoPointer = 0,
BitsPointer = 1,
BitsIface = 2,
BitsEface = 3,
RootData = 0,
RootBss = 1,
RootFinalizers = 2,
RootSpanTypes = 3,
RootFlushCaches = 4,
RootCount = 5,
};
static struct
{
Lock;
void* head;
} pools;
void
sync·runtime_registerPool(void **p)
{
runtime·lock(&pools);
p[0] = pools.head;
pools.head = p;
runtime·unlock(&pools);
}
static void
clearpools(void)
{
void **pool, **next;
P *p, **pp;
MCache *c;
uintptr off;
int32 i;
// clear sync.Pool's
for(pool = pools.head; pool != nil; pool = next) {
next = pool[0];
pool[0] = nil; // next
pool[1] = nil; // local
pool[2] = nil; // localSize
off = (uintptr)pool[3] / sizeof(void*);
pool[off+0] = nil; // global slice
pool[off+1] = nil;
pool[off+2] = nil;
}
pools.head = nil;
for(pp=runtime·allp; p=*pp; pp++) {
// clear tinyalloc pool
c = p->mcache;
if(c != nil) {
c->tiny = nil;
c->tinysize = 0;
}
// clear defer pools
for(i=0; i<nelem(p->deferpool); i++)
p->deferpool[i] = nil;
}
}
// Bits in per-word bitmap.
// #defines because enum might not be able to hold the values.
//
// Each word in the bitmap describes wordsPerBitmapWord words
// of heap memory. There are 4 bitmap bits dedicated to each heap word,
// so on a 64-bit system there is one bitmap word per 16 heap words.
// The bits in the word are packed together by type first, then by
// heap location, so each 64-bit bitmap word consists of, from top to bottom,
// the 16 bitSpecial bits for the corresponding heap words, then the 16 bitMarked bits,
// then the 16 bitScan/bitBlockBoundary bits, then the 16 bitAllocated bits.
// This layout makes it easier to iterate over the bits of a given type.
//
// The bitmap starts at mheap.arena_start and extends *backward* from
// there. On a 64-bit system the off'th word in the arena is tracked by
// the off/16+1'th word before mheap.arena_start. (On a 32-bit system,
// the only difference is that the divisor is 8.)
//
// To pull out the bits corresponding to a given pointer p, we use:
//
// off = p - (uintptr*)mheap.arena_start; // word offset
// b = (uintptr*)mheap.arena_start - off/wordsPerBitmapWord - 1;
// shift = off % wordsPerBitmapWord
// bits = *b >> shift;
// /* then test bits & bitAllocated, bits & bitMarked, etc. */
//
#define bitAllocated ((uintptr)1<<(bitShift*0)) /* block start; eligible for garbage collection */
#define bitScan ((uintptr)1<<(bitShift*1)) /* when bitAllocated is set */
#define bitMarked ((uintptr)1<<(bitShift*2)) /* when bitAllocated is set */
#define bitSpecial ((uintptr)1<<(bitShift*3)) /* when bitAllocated is set - has finalizer or being profiled */
#define bitBlockBoundary ((uintptr)1<<(bitShift*1)) /* when bitAllocated is NOT set - mark for FlagNoGC objects */
#define bitMask (bitAllocated | bitScan | bitMarked | bitSpecial)
// Holding worldsema grants an M the right to try to stop the world.
// The procedure is:
//
// runtime·semacquire(&runtime·worldsema);
// m->gcing = 1;
// runtime·stoptheworld();
//
// ... do stuff ...
//
// m->gcing = 0;
// runtime·semrelease(&runtime·worldsema);
// runtime·starttheworld();
//
uint32 runtime·worldsema = 1;
typedef struct Obj Obj;
struct Obj
{
byte *p; // data pointer
uintptr n; // size of data in bytes
uintptr ti; // type info
};
typedef struct Workbuf Workbuf;
struct Workbuf
{
#define SIZE (WorkbufSize-sizeof(LFNode)-sizeof(uintptr))
LFNode node; // must be first
uintptr nobj;
Obj obj[SIZE/sizeof(Obj) - 1];
uint8 _padding[SIZE%sizeof(Obj) + sizeof(Obj)];
#undef SIZE
};
typedef struct Finalizer Finalizer;
struct Finalizer
{
FuncVal *fn;
void *arg;
uintptr nret;
Type *fint;
PtrType *ot;
};
typedef struct FinBlock FinBlock;
struct FinBlock
{
FinBlock *alllink;
FinBlock *next;
int32 cnt;
int32 cap;
Finalizer fin[1];
};
extern byte data[];
extern byte edata[];
extern byte bss[];
extern byte ebss[];
extern byte gcdata[];
extern byte gcbss[];
static G *fing;
static FinBlock *finq; // list of finalizers that are to be executed
static FinBlock *finc; // cache of free blocks
static FinBlock *allfin; // list of all blocks
static Lock finlock;
static int32 fingwait;
static void runfinq(void);
static Workbuf* getempty(Workbuf*);
static Workbuf* getfull(Workbuf*);
static void putempty(Workbuf*);
static Workbuf* handoff(Workbuf*);
static void gchelperstart(void);
static void addfinroots(void *wbufp, void *v);
static void flushallmcaches(void);
static void scanframe(Stkframe *frame, void *wbufp);
static void addstackroots(G *gp, Workbuf **wbufp);
static struct {
uint64 full; // lock-free list of full blocks
uint64 empty; // lock-free list of empty blocks
byte pad0[CacheLineSize]; // prevents false-sharing between full/empty and nproc/nwait
uint32 nproc;
int64 tstart;
volatile uint32 nwait;
volatile uint32 ndone;
Note alldone;
ParFor *markfor;
ParFor *sweepfor;
Lock;
byte *chunk;
uintptr nchunk;
} work;
enum {
GC_DEFAULT_PTR = GC_NUM_INSTR,
GC_CHAN,
GC_NUM_INSTR2
};
static struct {
struct {
uint64 sum;
uint64 cnt;
} ptr;
uint64 nbytes;
struct {
uint64 sum;
uint64 cnt;
uint64 notype;
uint64 typelookup;
} obj;
uint64 rescan;
uint64 rescanbytes;
uint64 instr[GC_NUM_INSTR2];
uint64 putempty;
uint64 getfull;
struct {
uint64 foundbit;
uint64 foundword;
uint64 foundspan;
} flushptrbuf;
struct {
uint64 foundbit;
uint64 foundword;
uint64 foundspan;
} markonly;
} gcstats;
// markonly marks an object. It returns true if the object
// has been marked by this function, false otherwise.
// This function doesn't append the object to any buffer.
static bool
markonly(void *obj)
{
byte *p;
uintptr *bitp, bits, shift, x, xbits, off, j;
MSpan *s;
PageID k;
// Words outside the arena cannot be pointers.
if(obj < runtime·mheap.arena_start || obj >= runtime·mheap.arena_used)
return false;
// obj may be a pointer to a live object.
// Try to find the beginning of the object.
// Round down to word boundary.
obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1));
// Find bits for this word.
off = (uintptr*)obj - (uintptr*)runtime·mheap.arena_start;
bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
xbits = *bitp;
bits = xbits >> shift;
// Pointing at the beginning of a block?
if((bits & (bitAllocated|bitBlockBoundary)) != 0) {
if(CollectStats)
runtime·xadd64(&gcstats.markonly.foundbit, 1);
goto found;
}
// Pointing just past the beginning?
// Scan backward a little to find a block boundary.
for(j=shift; j-->0; ) {
if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) {
shift = j;
bits = xbits>>shift;
if(CollectStats)
runtime·xadd64(&gcstats.markonly.foundword, 1);
goto found;
}
}
// Otherwise consult span table to find beginning.
// (Manually inlined copy of MHeap_LookupMaybe.)
k = (uintptr)obj>>PageShift;
x = k;
x -= (uintptr)runtime·mheap.arena_start>>PageShift;
s = runtime·mheap.spans[x];
if(s == nil || k < s->start || obj >= s->limit || s->state != MSpanInUse)
return false;
p = (byte*)((uintptr)s->start<<PageShift);
if(s->sizeclass == 0) {
obj = p;
} else {
uintptr size = s->elemsize;
int32 i = ((byte*)obj - p)/size;
obj = p+i*size;
}
// Now that we know the object header, reload bits.
off = (uintptr*)obj - (uintptr*)runtime·mheap.arena_start;
bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
xbits = *bitp;
bits = xbits >> shift;
if(CollectStats)
runtime·xadd64(&gcstats.markonly.foundspan, 1);
found:
// Now we have bits, bitp, and shift correct for
// obj pointing at the base of the object.
// Only care about allocated and not marked.
if((bits & (bitAllocated|bitMarked)) != bitAllocated)
return false;
if(work.nproc == 1)
*bitp |= bitMarked<<shift;
else {
for(;;) {
x = *bitp;
if(x & (bitMarked<<shift))
return false;
if(runtime·casp((void**)bitp, (void*)x, (void*)(x|(bitMarked<<shift))))
break;
}
}
// The object is now marked
return true;
}
// PtrTarget is a structure used by intermediate buffers.
// The intermediate buffers hold GC data before it
// is moved/flushed to the work buffer (Workbuf).
// The size of an intermediate buffer is very small,
// such as 32 or 64 elements.
typedef struct PtrTarget PtrTarget;
struct PtrTarget
{
void *p;
uintptr ti;
};
typedef struct Scanbuf Scanbuf;
struct Scanbuf
{
struct {
PtrTarget *begin;
PtrTarget *end;
PtrTarget *pos;
} ptr;
struct {
Obj *begin;
Obj *end;
Obj *pos;
} obj;
Workbuf *wbuf;
Obj *wp;
uintptr nobj;
};
typedef struct BufferList BufferList;
struct BufferList
{
PtrTarget ptrtarget[IntermediateBufferCapacity];
Obj obj[IntermediateBufferCapacity];
uint32 busy;
byte pad[CacheLineSize];
};
#pragma dataflag NOPTR
static BufferList bufferList[MaxGcproc];
static Type *itabtype;
static void enqueue(Obj obj, Workbuf **_wbuf, Obj **_wp, uintptr *_nobj);
// flushptrbuf moves data from the PtrTarget buffer to the work buffer.
// The PtrTarget buffer contains blocks irrespective of whether the blocks have been marked or scanned,
// while the work buffer contains blocks which have been marked
// and are prepared to be scanned by the garbage collector.
//
// _wp, _wbuf, _nobj are input/output parameters and are specifying the work buffer.
//
// A simplified drawing explaining how the todo-list moves from a structure to another:
//
// scanblock
// (find pointers)
// Obj ------> PtrTarget (pointer targets)
// ↑ |
// | |
// `----------'
// flushptrbuf
// (find block start, mark and enqueue)
static void
flushptrbuf(Scanbuf *sbuf)
{
byte *p, *arena_start, *obj;
uintptr size, *bitp, bits, shift, j, x, xbits, off, nobj, ti, n;
MSpan *s;
PageID k;
Obj *wp;
Workbuf *wbuf;
PtrTarget *ptrbuf;
PtrTarget *ptrbuf_end;
arena_start = runtime·mheap.arena_start;
wp = sbuf->wp;
wbuf = sbuf->wbuf;
nobj = sbuf->nobj;
ptrbuf = sbuf->ptr.begin;
ptrbuf_end = sbuf->ptr.pos;
n = ptrbuf_end - sbuf->ptr.begin;
sbuf->ptr.pos = sbuf->ptr.begin;
if(CollectStats) {
runtime·xadd64(&gcstats.ptr.sum, n);
runtime·xadd64(&gcstats.ptr.cnt, 1);
}
// If buffer is nearly full, get a new one.
if(wbuf == nil || nobj+n >= nelem(wbuf->obj)) {
if(wbuf != nil)
wbuf->nobj = nobj;
wbuf = getempty(wbuf);
wp = wbuf->obj;
nobj = 0;
if(n >= nelem(wbuf->obj))
runtime·throw("ptrbuf has to be smaller than WorkBuf");
}
while(ptrbuf < ptrbuf_end) {
obj = ptrbuf->p;
ti = ptrbuf->ti;
ptrbuf++;
// obj belongs to interval [mheap.arena_start, mheap.arena_used).
if(Debug > 1) {
if(obj < runtime·mheap.arena_start || obj >= runtime·mheap.arena_used)
runtime·throw("object is outside of mheap");
}
// obj may be a pointer to a live object.
// Try to find the beginning of the object.
// Round down to word boundary.
if(((uintptr)obj & ((uintptr)PtrSize-1)) != 0) {
obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1));
ti = 0;
}
// Find bits for this word.
off = (uintptr*)obj - (uintptr*)arena_start;
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
xbits = *bitp;
bits = xbits >> shift;
// Pointing at the beginning of a block?
if((bits & (bitAllocated|bitBlockBoundary)) != 0) {
if(CollectStats)
runtime·xadd64(&gcstats.flushptrbuf.foundbit, 1);
goto found;
}
ti = 0;
// Pointing just past the beginning?
// Scan backward a little to find a block boundary.
for(j=shift; j-->0; ) {
if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) {
obj = (byte*)obj - (shift-j)*PtrSize;
shift = j;
bits = xbits>>shift;
if(CollectStats)
runtime·xadd64(&gcstats.flushptrbuf.foundword, 1);
goto found;
}
}
// Otherwise consult span table to find beginning.
// (Manually inlined copy of MHeap_LookupMaybe.)
k = (uintptr)obj>>PageShift;
x = k;
x -= (uintptr)arena_start>>PageShift;
s = runtime·mheap.spans[x];
if(s == nil || k < s->start || obj >= s->limit || s->state != MSpanInUse)
continue;
p = (byte*)((uintptr)s->start<<PageShift);
if(s->sizeclass == 0) {
obj = p;
} else {
size = s->elemsize;
int32 i = ((byte*)obj - p)/size;
obj = p+i*size;
}
// Now that we know the object header, reload bits.
off = (uintptr*)obj - (uintptr*)arena_start;
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
xbits = *bitp;
bits = xbits >> shift;
if(CollectStats)
runtime·xadd64(&gcstats.flushptrbuf.foundspan, 1);
found:
// Now we have bits, bitp, and shift correct for
// obj pointing at the base of the object.
// Only care about allocated and not marked.
if((bits & (bitAllocated|bitMarked)) != bitAllocated)
continue;
if(work.nproc == 1)
*bitp |= bitMarked<<shift;
else {
for(;;) {
x = *bitp;
if(x & (bitMarked<<shift))
goto continue_obj;
if(runtime·casp((void**)bitp, (void*)x, (void*)(x|(bitMarked<<shift))))
break;
}
}
// If object has no pointers, don't need to scan further.
if((bits & bitScan) == 0)
continue;
// Ask span about size class.
// (Manually inlined copy of MHeap_Lookup.)
x = (uintptr)obj >> PageShift;
x -= (uintptr)arena_start>>PageShift;
s = runtime·mheap.spans[x];
PREFETCH(obj);
*wp = (Obj){obj, s->elemsize, ti};
wp++;
nobj++;
continue_obj:;
}
// If another proc wants a pointer, give it some.
if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) {
wbuf->nobj = nobj;
wbuf = handoff(wbuf);
nobj = wbuf->nobj;
wp = wbuf->obj + nobj;
}
sbuf->wp = wp;
sbuf->wbuf = wbuf;
sbuf->nobj = nobj;
}
static void
flushobjbuf(Scanbuf *sbuf)
{
uintptr nobj, off;
Obj *wp, obj;
Workbuf *wbuf;
Obj *objbuf;
Obj *objbuf_end;
wp = sbuf->wp;
wbuf = sbuf->wbuf;
nobj = sbuf->nobj;
objbuf = sbuf->obj.begin;
objbuf_end = sbuf->obj.pos;
sbuf->obj.pos = sbuf->obj.begin;
while(objbuf < objbuf_end) {
obj = *objbuf++;
// Align obj.b to a word boundary.
off = (uintptr)obj.p & (PtrSize-1);
if(off != 0) {
obj.p += PtrSize - off;
obj.n -= PtrSize - off;
obj.ti = 0;
}
if(obj.p == nil || obj.n == 0)
continue;
// If buffer is full, get a new one.
if(wbuf == nil || nobj >= nelem(wbuf->obj)) {
if(wbuf != nil)
wbuf->nobj = nobj;
wbuf = getempty(wbuf);
wp = wbuf->obj;
nobj = 0;
}
*wp = obj;
wp++;
nobj++;
}
// If another proc wants a pointer, give it some.
if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) {
wbuf->nobj = nobj;
wbuf = handoff(wbuf);
nobj = wbuf->nobj;
wp = wbuf->obj + nobj;
}
sbuf->wp = wp;
sbuf->wbuf = wbuf;
sbuf->nobj = nobj;
}
// Program that scans the whole block and treats every block element as a potential pointer
static uintptr defaultProg[2] = {PtrSize, GC_DEFAULT_PTR};
// Hchan program
static uintptr chanProg[2] = {0, GC_CHAN};
// Local variables of a program fragment or loop
typedef struct Frame Frame;
struct Frame {
uintptr count, elemsize, b;
uintptr *loop_or_ret;
};
// Sanity check for the derived type info objti.
static void
checkptr(void *obj, uintptr objti)
{
uintptr *pc1, *pc2, type, tisize, i, j, x;
byte *objstart;
Type *t;
MSpan *s;
if(!Debug)
runtime·throw("checkptr is debug only");
if(obj < runtime·mheap.arena_start || obj >= runtime·mheap.arena_used)
return;
type = runtime·gettype(obj);
t = (Type*)(type & ~(uintptr)(PtrSize-1));
if(t == nil)
return;
x = (uintptr)obj >> PageShift;
x -= (uintptr)(runtime·mheap.arena_start)>>PageShift;
s = runtime·mheap.spans[x];
objstart = (byte*)((uintptr)s->start<<PageShift);
if(s->sizeclass != 0) {
i = ((byte*)obj - objstart)/s->elemsize;
objstart += i*s->elemsize;
}
tisize = *(uintptr*)objti;
// Sanity check for object size: it should fit into the memory block.
if((byte*)obj + tisize > objstart + s->elemsize) {
runtime·printf("object of type '%S' at %p/%p does not fit in block %p/%p\n",
*t->string, obj, tisize, objstart, s->elemsize);
runtime·throw("invalid gc type info");
}
if(obj != objstart)
return;
// If obj points to the beginning of the memory block,
// check type info as well.
if(t->string == nil ||
// Gob allocates unsafe pointers for indirection.
(runtime·strcmp(t->string->str, (byte*)"unsafe.Pointer") &&
// Runtime and gc think differently about closures.
runtime·strstr(t->string->str, (byte*)"struct { F uintptr") != t->string->str)) {
pc1 = (uintptr*)objti;
pc2 = (uintptr*)t->gc;
// A simple best-effort check until first GC_END.
for(j = 1; pc1[j] != GC_END && pc2[j] != GC_END; j++) {
if(pc1[j] != pc2[j]) {
runtime·printf("invalid gc type info for '%s' at %p, type info %p, block info %p\n",
t->string ? (int8*)t->string->str : (int8*)"?", j, pc1[j], pc2[j]);
runtime·throw("invalid gc type info");
}
}
}
}
// scanblock scans a block of n bytes starting at pointer b for references
// to other objects, scanning any it finds recursively until there are no
// unscanned objects left. Instead of using an explicit recursion, it keeps
// a work list in the Workbuf* structures and loops in the main function
// body. Keeping an explicit work list is easier on the stack allocator and
// more efficient.
static void
scanblock(Workbuf *wbuf, bool keepworking)
{
byte *b, *arena_start, *arena_used;
uintptr n, i, end_b, elemsize, size, ti, objti, count, type, nobj;
uintptr *pc, precise_type, nominal_size;
uintptr *chan_ret, chancap;
void *obj;
Type *t;
Slice *sliceptr;
Frame *stack_ptr, stack_top, stack[GC_STACK_CAPACITY+4];
BufferList *scanbuffers;
Scanbuf sbuf;
Eface *eface;
Iface *iface;
Hchan *chan;
ChanType *chantype;
Obj *wp;
if(sizeof(Workbuf) % WorkbufSize != 0)
runtime·throw("scanblock: size of Workbuf is suboptimal");
// Memory arena parameters.
arena_start = runtime·mheap.arena_start;
arena_used = runtime·mheap.arena_used;
stack_ptr = stack+nelem(stack)-1;
precise_type = false;
nominal_size = 0;
if(wbuf) {
nobj = wbuf->nobj;
wp = &wbuf->obj[nobj];
} else {
nobj = 0;
wp = nil;
}
// Initialize sbuf
scanbuffers = &bufferList[m->helpgc];
sbuf.ptr.begin = sbuf.ptr.pos = &scanbuffers->ptrtarget[0];
sbuf.ptr.end = sbuf.ptr.begin + nelem(scanbuffers->ptrtarget);
sbuf.obj.begin = sbuf.obj.pos = &scanbuffers->obj[0];
sbuf.obj.end = sbuf.obj.begin + nelem(scanbuffers->obj);
sbuf.wbuf = wbuf;
sbuf.wp = wp;
sbuf.nobj = nobj;
// (Silence the compiler)
chan = nil;
chantype = nil;
chan_ret = nil;
goto next_block;
for(;;) {
// Each iteration scans the block b of length n, queueing pointers in
// the work buffer.
if(Debug > 1) {
runtime·printf("scanblock %p %D\n", b, (int64)n);
}
if(CollectStats) {
runtime·xadd64(&gcstats.nbytes, n);
runtime·xadd64(&gcstats.obj.sum, sbuf.nobj);
runtime·xadd64(&gcstats.obj.cnt, 1);
}
if(ti != 0) {
pc = (uintptr*)(ti & ~(uintptr)PC_BITS);
precise_type = (ti & PRECISE);
stack_top.elemsize = pc[0];
if(!precise_type)
nominal_size = pc[0];
if(ti & LOOP) {
stack_top.count = 0; // 0 means an infinite number of iterations
stack_top.loop_or_ret = pc+1;
} else {
stack_top.count = 1;
}
if(Debug) {
// Simple sanity check for provided type info ti:
// The declared size of the object must be not larger than the actual size
// (it can be smaller due to inferior pointers).
// It's difficult to make a comprehensive check due to inferior pointers,
// reflection, gob, etc.
if(pc[0] > n) {
runtime·printf("invalid gc type info: type info size %p, block size %p\n", pc[0], n);
runtime·throw("invalid gc type info");
}
}
} else if(UseSpanType) {
if(CollectStats)
runtime·xadd64(&gcstats.obj.notype, 1);
type = runtime·gettype(b);
if(type != 0) {
if(CollectStats)
runtime·xadd64(&gcstats.obj.typelookup, 1);
t = (Type*)(type & ~(uintptr)(PtrSize-1));
switch(type & (PtrSize-1)) {
case TypeInfo_SingleObject:
pc = (uintptr*)t->gc;
precise_type = true; // type information about 'b' is precise
stack_top.count = 1;
stack_top.elemsize = pc[0];
break;
case TypeInfo_Array:
pc = (uintptr*)t->gc;
if(pc[0] == 0)
goto next_block;
precise_type = true; // type information about 'b' is precise
stack_top.count = 0; // 0 means an infinite number of iterations
stack_top.elemsize = pc[0];
stack_top.loop_or_ret = pc+1;
break;
case TypeInfo_Chan:
chan = (Hchan*)b;
chantype = (ChanType*)t;
chan_ret = nil;
pc = chanProg;
break;
default:
runtime·throw("scanblock: invalid type");
return;
}
} else {
pc = defaultProg;
}
} else {
pc = defaultProg;
}
if(IgnorePreciseGC)
pc = defaultProg;
pc++;
stack_top.b = (uintptr)b;
end_b = (uintptr)b + n - PtrSize;
for(;;) {
if(CollectStats)
runtime·xadd64(&gcstats.instr[pc[0]], 1);
obj = nil;
objti = 0;
switch(pc[0]) {
case GC_PTR:
obj = *(void**)(stack_top.b + pc[1]);
objti = pc[2];
pc += 3;
if(Debug)
checkptr(obj, objti);
break;
case GC_SLICE:
sliceptr = (Slice*)(stack_top.b + pc[1]);
if(sliceptr->cap != 0) {
obj = sliceptr->array;
// Can't use slice element type for scanning,
// because if it points to an array embedded
// in the beginning of a struct,
// we will scan the whole struct as the slice.
// So just obtain type info from heap.
}
pc += 3;
break;
case GC_APTR:
obj = *(void**)(stack_top.b + pc[1]);
pc += 2;
break;
case GC_STRING:
obj = *(void**)(stack_top.b + pc[1]);
markonly(obj);
pc += 2;
continue;
case GC_EFACE:
eface = (Eface*)(stack_top.b + pc[1]);
pc += 2;
if(eface->type == nil)
continue;
// eface->type
t = eface->type;
if((void*)t >= arena_start && (void*)t < arena_used) {
*sbuf.ptr.pos++ = (PtrTarget){t, 0};
if(sbuf.ptr.pos == sbuf.ptr.end)
flushptrbuf(&sbuf);
}
// eface->data
if(eface->data >= arena_start && eface->data < arena_used) {
if(t->size <= sizeof(void*)) {
if((t->kind & KindNoPointers))
continue;
obj = eface->data;
if((t->kind & ~KindNoPointers) == KindPtr)
objti = (uintptr)((PtrType*)t)->elem->gc;
} else {
obj = eface->data;
objti = (uintptr)t->gc;
}
}
break;
case GC_IFACE:
iface = (Iface*)(stack_top.b + pc[1]);
pc += 2;
if(iface->tab == nil)
continue;
// iface->tab
if((void*)iface->tab >= arena_start && (void*)iface->tab < arena_used) {
*sbuf.ptr.pos++ = (PtrTarget){iface->tab, (uintptr)itabtype->gc};
if(sbuf.ptr.pos == sbuf.ptr.end)
flushptrbuf(&sbuf);
}
// iface->data
if(iface->data >= arena_start && iface->data < arena_used) {
t = iface->tab->type;
if(t->size <= sizeof(void*)) {
if((t->kind & KindNoPointers))
continue;
obj = iface->data;
if((t->kind & ~KindNoPointers) == KindPtr)
objti = (uintptr)((PtrType*)t)->elem->gc;
} else {
obj = iface->data;
objti = (uintptr)t->gc;
}
}
break;
case GC_DEFAULT_PTR:
while(stack_top.b <= end_b) {
obj = *(byte**)stack_top.b;
stack_top.b += PtrSize;
if(obj >= arena_start && obj < arena_used) {
*sbuf.ptr.pos++ = (PtrTarget){obj, 0};
if(sbuf.ptr.pos == sbuf.ptr.end)
flushptrbuf(&sbuf);
}
}
goto next_block;
case GC_END:
if(--stack_top.count != 0) {
// Next iteration of a loop if possible.
stack_top.b += stack_top.elemsize;
if(stack_top.b + stack_top.elemsize <= end_b+PtrSize) {
pc = stack_top.loop_or_ret;
continue;
}
i = stack_top.b;
} else {
// Stack pop if possible.
if(stack_ptr+1 < stack+nelem(stack)) {
pc = stack_top.loop_or_ret;
stack_top = *(++stack_ptr);
continue;
}
i = (uintptr)b + nominal_size;
}
if(!precise_type) {
// Quickly scan [b+i,b+n) for possible pointers.
for(; i<=end_b; i+=PtrSize) {
if(*(byte**)i != nil) {
// Found a value that may be a pointer.
// Do a rescan of the entire block.
enqueue((Obj){b, n, 0}, &sbuf.wbuf, &sbuf.wp, &sbuf.nobj);
if(CollectStats) {
runtime·xadd64(&gcstats.rescan, 1);
runtime·xadd64(&gcstats.rescanbytes, n);
}
break;
}
}
}
goto next_block;
case GC_ARRAY_START:
i = stack_top.b + pc[1];
count = pc[2];
elemsize = pc[3];
pc += 4;
// Stack push.
*stack_ptr-- = stack_top;
stack_top = (Frame){count, elemsize, i, pc};
continue;
case GC_ARRAY_NEXT:
if(--stack_top.count != 0) {
stack_top.b += stack_top.elemsize;
pc = stack_top.loop_or_ret;
} else {
// Stack pop.
stack_top = *(++stack_ptr);
pc += 1;
}
continue;
case GC_CALL:
// Stack push.
*stack_ptr-- = stack_top;
stack_top = (Frame){1, 0, stack_top.b + pc[1], pc+3 /*return address*/};
pc = (uintptr*)((byte*)pc + *(int32*)(pc+2)); // target of the CALL instruction
continue;
case GC_REGION:
obj = (void*)(stack_top.b + pc[1]);
size = pc[2];
objti = pc[3];
pc += 4;
*sbuf.obj.pos++ = (Obj){obj, size, objti};
if(sbuf.obj.pos == sbuf.obj.end)
flushobjbuf(&sbuf);
continue;
case GC_CHAN_PTR:
chan = *(Hchan**)(stack_top.b + pc[1]);
if(chan == nil) {
pc += 3;
continue;
}
if(markonly(chan)) {
chantype = (ChanType*)pc[2];
if(!(chantype->elem->kind & KindNoPointers)) {
// Start chanProg.
chan_ret = pc+3;
pc = chanProg+1;
continue;
}
}
pc += 3;
continue;
case GC_CHAN:
// There are no heap pointers in struct Hchan,
// so we can ignore the leading sizeof(Hchan) bytes.
if(!(chantype->elem->kind & KindNoPointers)) {
// Channel's buffer follows Hchan immediately in memory.
// Size of buffer (cap(c)) is second int in the chan struct.
chancap = ((uintgo*)chan)[1];
if(chancap > 0) {
// TODO(atom): split into two chunks so that only the
// in-use part of the circular buffer is scanned.
// (Channel routines zero the unused part, so the current
// code does not lead to leaks, it's just a little inefficient.)
*sbuf.obj.pos++ = (Obj){(byte*)chan+runtime·Hchansize, chancap*chantype->elem->size,
(uintptr)chantype->elem->gc | PRECISE | LOOP};
if(sbuf.obj.pos == sbuf.obj.end)
flushobjbuf(&sbuf);
}
}
if(chan_ret == nil)
goto next_block;
pc = chan_ret;
continue;
default:
runtime·throw("scanblock: invalid GC instruction");
return;
}
if(obj >= arena_start && obj < arena_used) {
*sbuf.ptr.pos++ = (PtrTarget){obj, objti};
if(sbuf.ptr.pos == sbuf.ptr.end)
flushptrbuf(&sbuf);
}
}
next_block:
// Done scanning [b, b+n). Prepare for the next iteration of
// the loop by setting b, n, ti to the parameters for the next block.
if(sbuf.nobj == 0) {
flushptrbuf(&sbuf);
flushobjbuf(&sbuf);
if(sbuf.nobj == 0) {
if(!keepworking) {
if(sbuf.wbuf)
putempty(sbuf.wbuf);
return;
}
// Emptied our buffer: refill.
sbuf.wbuf = getfull(sbuf.wbuf);
if(sbuf.wbuf == nil)
return;
sbuf.nobj = sbuf.wbuf->nobj;
sbuf.wp = sbuf.wbuf->obj + sbuf.wbuf->nobj;
}
}
// Fetch b from the work buffer.
--sbuf.wp;
b = sbuf.wp->p;
n = sbuf.wp->n;
ti = sbuf.wp->ti;
sbuf.nobj--;
}
}
// Append obj to the work buffer.
// _wbuf, _wp, _nobj are input/output parameters and are specifying the work buffer.
static void
enqueue(Obj obj, Workbuf **_wbuf, Obj **_wp, uintptr *_nobj)
{
uintptr nobj, off;
Obj *wp;
Workbuf *wbuf;
if(Debug > 1)
runtime·printf("append obj(%p %D %p)\n", obj.p, (int64)obj.n, obj.ti);
// Align obj.b to a word boundary.
off = (uintptr)obj.p & (PtrSize-1);
if(off != 0) {
obj.p += PtrSize - off;
obj.n -= PtrSize - off;
obj.ti = 0;
}
if(obj.p == nil || obj.n == 0)
return;
// Load work buffer state
wp = *_wp;
wbuf = *_wbuf;
nobj = *_nobj;
// If another proc wants a pointer, give it some.
if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) {
wbuf->nobj = nobj;
wbuf = handoff(wbuf);
nobj = wbuf->nobj;
wp = wbuf->obj + nobj;
}
// If buffer is full, get a new one.
if(wbuf == nil || nobj >= nelem(wbuf->obj)) {
if(wbuf != nil)
wbuf->nobj = nobj;
wbuf = getempty(wbuf);
wp = wbuf->obj;
nobj = 0;
}
*wp = obj;
wp++;
nobj++;
// Save work buffer state
*_wp = wp;
*_wbuf = wbuf;
*_nobj = nobj;
}
static void
enqueue1(Workbuf **wbufp, Obj obj)
{
Workbuf *wbuf;
wbuf = *wbufp;
if(wbuf->nobj >= nelem(wbuf->obj))
*wbufp = wbuf = getempty(wbuf);
wbuf->obj[wbuf->nobj++] = obj;
}
static void
markroot(ParFor *desc, uint32 i)
{
Workbuf *wbuf;
FinBlock *fb;
MSpan **allspans, *s;
uint32 spanidx;
G *gp;
void *p;
USED(&desc);
wbuf = getempty(nil);
switch(i) {
case RootData:
enqueue1(&wbuf, (Obj){data, edata - data, (uintptr)gcdata});
break;
case RootBss:
enqueue1(&wbuf, (Obj){bss, ebss - bss, (uintptr)gcbss});
break;
case RootFinalizers:
for(fb=allfin; fb; fb=fb->alllink)
enqueue1(&wbuf, (Obj){(byte*)fb->fin, fb->cnt*sizeof(fb->fin[0]), 0});
break;
case RootSpanTypes:
// mark span types and MSpan.specials (to walk spans only once)
allspans = runtime·mheap.allspans;
for(spanidx=0; spanidx<runtime·mheap.nspan; spanidx++) {
Special *sp;
SpecialFinalizer *spf;
s = allspans[spanidx];
if(s->state != MSpanInUse)
continue;
// The garbage collector ignores type pointers stored in MSpan.types:
// - Compiler-generated types are stored outside of heap.
// - The reflect package has runtime-generated types cached in its data structures.
// The garbage collector relies on finding the references via that cache.
if(s->types.compression == MTypes_Words || s->types.compression == MTypes_Bytes)
markonly((byte*)s->types.data);
for(sp = s->specials; sp != nil; sp = sp->next) {
if(sp->kind != KindSpecialFinalizer)
continue;
// don't mark finalized object, but scan it so we
// retain everything it points to.
spf = (SpecialFinalizer*)sp;
// A finalizer can be set for an inner byte of an object, find object beginning.
p = (void*)((s->start << PageShift) + spf->offset/s->elemsize*s->elemsize);
enqueue1(&wbuf, (Obj){p, s->elemsize, 0});
enqueue1(&wbuf, (Obj){(void*)&spf->fn, PtrSize, 0});
enqueue1(&wbuf, (Obj){(void*)&spf->fint, PtrSize, 0});
enqueue1(&wbuf, (Obj){(void*)&spf->ot, PtrSize, 0});
}
}
break;
case RootFlushCaches:
flushallmcaches();
break;
default:
// the rest is scanning goroutine stacks
if(i - RootCount >= runtime·allglen)
runtime·throw("markroot: bad index");
gp = runtime·allg[i - RootCount];
// remember when we've first observed the G blocked
// needed only to output in traceback
if((gp->status == Gwaiting || gp->status == Gsyscall) && gp->waitsince == 0)
gp->waitsince = work.tstart;
addstackroots(gp, &wbuf);
break;
}
if(wbuf)
scanblock(wbuf, false);
}
// Get an empty work buffer off the work.empty list,
// allocating new buffers as needed.
static Workbuf*
getempty(Workbuf *b)
{
if(b != nil)
runtime·lfstackpush(&work.full, &b->node);
b = (Workbuf*)runtime·lfstackpop(&work.empty);
if(b == nil) {
// Need to allocate.
runtime·lock(&work);
if(work.nchunk < sizeof *b) {
work.nchunk = 1<<20;
work.chunk = runtime·SysAlloc(work.nchunk, &mstats.gc_sys);
if(work.chunk == nil)
runtime·throw("runtime: cannot allocate memory");
}
b = (Workbuf*)work.chunk;
work.chunk += sizeof *b;
work.nchunk -= sizeof *b;
runtime·unlock(&work);
}
b->nobj = 0;
return b;
}
static void
putempty(Workbuf *b)
{
if(CollectStats)
runtime·xadd64(&gcstats.putempty, 1);
runtime·lfstackpush(&work.empty, &b->node);
}
// Get a full work buffer off the work.full list, or return nil.
static Workbuf*
getfull(Workbuf *b)
{
int32 i;
if(CollectStats)
runtime·xadd64(&gcstats.getfull, 1);
if(b != nil)
runtime·lfstackpush(&work.empty, &b->node);
b = (Workbuf*)runtime·lfstackpop(&work.full);
if(b != nil || work.nproc == 1)
return b;
runtime·xadd(&work.nwait, +1);
for(i=0;; i++) {
if(work.full != 0) {
runtime·xadd(&work.nwait, -1);
b = (Workbuf*)runtime·lfstackpop(&work.full);
if(b != nil)
return b;
runtime·xadd(&work.nwait, +1);
}
if(work.nwait == work.nproc)
return nil;
if(i < 10) {
m->gcstats.nprocyield++;
runtime·procyield(20);
} else if(i < 20) {
m->gcstats.nosyield++;
runtime·osyield();
} else {
m->gcstats.nsleep++;
runtime·usleep(100);
}
}
}
static Workbuf*
handoff(Workbuf *b)
{
int32 n;
Workbuf *b1;
// Make new buffer with half of b's pointers.
b1 = getempty(nil);
n = b->nobj/2;
b->nobj -= n;
b1->nobj = n;
runtime·memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]);
m->gcstats.nhandoff++;
m->gcstats.nhandoffcnt += n;
// Put b on full list - let first half of b get stolen.
runtime·lfstackpush(&work.full, &b->node);
return b1;
}
extern byte pclntab[]; // base for f->ptrsoff
typedef struct BitVector BitVector;
struct BitVector
{
int32 n;
uint32 data[];
};
typedef struct StackMap StackMap;
struct StackMap
{
int32 n;
uint32 data[];
};
static BitVector*
stackmapdata(StackMap *stackmap, int32 n)
{
BitVector *bv;
uint32 *ptr;
uint32 words;
int32 i;
if(n < 0 || n >= stackmap->n) {
runtime·throw("stackmapdata: index out of range");
}
ptr = stackmap->data;
for(i = 0; i < n; i++) {
bv = (BitVector*)ptr;
words = ((bv->n + 31) / 32) + 1;
ptr += words;
}
return (BitVector*)ptr;
}
// Scans an interface data value when the interface type indicates
// that it is a pointer.
static void
scaninterfacedata(uintptr bits, byte *scanp, bool afterprologue, void *wbufp)
{
Itab *tab;
Type *type;
if(runtime·precisestack && afterprologue) {
if(bits == BitsIface) {
tab = *(Itab**)scanp;
if(tab->type->size <= sizeof(void*) && (tab->type->kind & KindNoPointers))
return;
} else { // bits == BitsEface
type = *(Type**)scanp;
if(type->size <= sizeof(void*) && (type->kind & KindNoPointers))
return;
}
}
enqueue1(wbufp, (Obj){scanp+PtrSize, PtrSize, 0});
}
// Starting from scanp, scans words corresponding to set bits.
static void
scanbitvector(byte *scanp, BitVector *bv, bool afterprologue, void *wbufp)
{
uintptr word, bits;
uint32 *wordp;
int32 i, remptrs;
wordp = bv->data;
for(remptrs = bv->n; remptrs > 0; remptrs -= 32) {
word = *wordp++;
if(remptrs < 32)
i = remptrs;
else
i = 32;
i /= BitsPerPointer;
for(; i > 0; i--) {
bits = word & 3;
if(bits != BitsNoPointer && *(void**)scanp != nil)
if(bits == BitsPointer)
enqueue1(wbufp, (Obj){scanp, PtrSize, 0});
else
scaninterfacedata(bits, scanp, afterprologue, wbufp);
word >>= BitsPerPointer;
scanp += PtrSize;
}
}
}
// Scan a stack frame: local variables and function arguments/results.
static void
scanframe(Stkframe *frame, void *wbufp)
{
Func *f;
StackMap *stackmap;
BitVector *bv;
uintptr size;
uintptr targetpc;
int32 pcdata;
bool afterprologue;
f = frame->fn;
targetpc = frame->pc;
if(targetpc != f->entry)
targetpc--;
pcdata = runtime·pcdatavalue(f, PCDATA_StackMapIndex, targetpc);
if(pcdata == -1) {
// We do not have a valid pcdata value but there might be a
// stackmap for this function. It is likely that we are looking
// at the function prologue, assume so and hope for the best.
pcdata = 0;
}
// Scan local variables if stack frame has been allocated.
// Use pointer information if known.
afterprologue = (frame->varp > (byte*)frame->sp);
if(afterprologue) {
stackmap = runtime·funcdata(f, FUNCDATA_LocalsPointerMaps);
if(stackmap == nil) {
// No locals information, scan everything.
size = frame->varp - (byte*)frame->sp;
enqueue1(wbufp, (Obj){frame->varp - size, size, 0});
} else if(stackmap->n < 0) {
// Locals size information, scan just the locals.
size = -stackmap->n;
enqueue1(wbufp, (Obj){frame->varp - size, size, 0});
} else if(stackmap->n > 0) {
// Locals bitmap information, scan just the pointers in
// locals.
if(pcdata < 0 || pcdata >= stackmap->n) {
// don't know where we are
runtime·printf("pcdata is %d and %d stack map entries for %s (targetpc=%p)\n",
pcdata, stackmap->n, runtime·funcname(f), targetpc);
runtime·throw("scanframe: bad symbol table");
}
bv = stackmapdata(stackmap, pcdata);
size = (bv->n * PtrSize) / BitsPerPointer;
scanbitvector(frame->varp - size, bv, afterprologue, wbufp);
}
}
// Scan arguments.
// Use pointer information if known.
stackmap = runtime·funcdata(f, FUNCDATA_ArgsPointerMaps);
if(stackmap != nil) {
bv = stackmapdata(stackmap, pcdata);
scanbitvector(frame->argp, bv, true, wbufp);
} else
enqueue1(wbufp, (Obj){frame->argp, frame->arglen, 0});
}
static void
addstackroots(G *gp, Workbuf **wbufp)
{
M *mp;
int32 n;
Stktop *stk;
uintptr sp, guard;
void *base;
uintptr size;
switch(gp->status){
default:
runtime·printf("unexpected G.status %d (goroutine %p %D)\n", gp->status, gp, gp->goid);
runtime·throw("mark - bad status");
case Gdead:
return;
case Grunning:
runtime·throw("mark - world not stopped");
case Grunnable:
case Gsyscall:
case Gwaiting:
break;
}
if(gp == g)
runtime·throw("can't scan our own stack");
if((mp = gp->m) != nil && mp->helpgc)
runtime·throw("can't scan gchelper stack");
if(gp->syscallstack != (uintptr)nil) {
// Scanning another goroutine that is about to enter or might
// have just exited a system call. It may be executing code such
// as schedlock and may have needed to start a new stack segment.
// Use the stack segment and stack pointer at the time of
// the system call instead, since that won't change underfoot.
sp = gp->syscallsp;
stk = (Stktop*)gp->syscallstack;
guard = gp->syscallguard;
} else {
// Scanning another goroutine's stack.
// The goroutine is usually asleep (the world is stopped).
sp = gp->sched.sp;
stk = (Stktop*)gp->stackbase;
guard = gp->stackguard;
// For function about to start, context argument is a root too.
if(gp->sched.ctxt != 0 && runtime·mlookup(gp->sched.ctxt, &base, &size, nil))
enqueue1(wbufp, (Obj){base, size, 0});
}
if(ScanStackByFrames) {
USED(sp);
USED(stk);
USED(guard);
runtime·gentraceback(~(uintptr)0, ~(uintptr)0, 0, gp, 0, nil, 0x7fffffff, scanframe, wbufp, false);
} else {
n = 0;
while(stk) {
if(sp < guard-StackGuard || (uintptr)stk < sp) {
runtime·printf("scanstack inconsistent: g%D#%d sp=%p not in [%p,%p]\n", gp->goid, n, sp, guard-StackGuard, stk);
runtime·throw("scanstack");
}
enqueue1(wbufp, (Obj){(byte*)sp, (uintptr)stk - sp, (uintptr)defaultProg | PRECISE | LOOP});
sp = stk->gobuf.sp;
guard = stk->stackguard;
stk = (Stktop*)stk->stackbase;
n++;
}
}
}
void
runtime·queuefinalizer(byte *p, FuncVal *fn, uintptr nret, Type *fint, PtrType *ot)
{
FinBlock *block;
Finalizer *f;
runtime·lock(&finlock);
if(finq == nil || finq->cnt == finq->cap) {
if(finc == nil) {
finc = runtime·persistentalloc(FinBlockSize, 0, &mstats.gc_sys);
finc->cap = (FinBlockSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1;
finc->alllink = allfin;
allfin = finc;
}
block = finc;
finc = block->next;
block->next = finq;
finq = block;
}
f = &finq->fin[finq->cnt];
finq->cnt++;
f->fn = fn;
f->nret = nret;
f->fint = fint;
f->ot = ot;
f->arg = p;
runtime·unlock(&finlock);
}
// Sweep frees or collects finalizers for blocks not marked in the mark phase.
// It clears the mark bits in preparation for the next GC round.
static void
sweepspan(ParFor *desc, uint32 idx)
{
int32 cl, n, npages;
uintptr size, off, *bitp, shift, bits;
byte *p;
MCache *c;
byte *arena_start;
MLink head, *end;
int32 nfree;
byte *type_data;
byte compression;
uintptr type_data_inc;
MSpan *s;
MLink *x;
Special *special, **specialp, *y;
USED(&desc);
s = runtime·mheap.allspans[idx];
if(s->state != MSpanInUse)
return;
arena_start = runtime·mheap.arena_start;
cl = s->sizeclass;
size = s->elemsize;
if(cl == 0) {
n = 1;
} else {
// Chunk full of small blocks.
npages = runtime·class_to_allocnpages[cl];
n = (npages << PageShift) / size;
}
nfree = 0;
end = &head;
c = m->mcache;
// mark any free objects in this span so we don't collect them
for(x = s->freelist; x != nil; x = x->next) {
// This is markonly(x) but faster because we don't need
// atomic access and we're guaranteed to be pointing at
// the head of a valid object.
off = (uintptr*)x - (uintptr*)runtime·mheap.arena_start;
bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
*bitp |= bitMarked<<shift;
}
// Unlink & free special records for any objects we're about to free.
specialp = &s->specials;
special = *specialp;
while(special != nil) {
// A finalizer can be set for an inner byte of an object, find object beginning.
p = (byte*)(s->start << PageShift) + special->offset/size*size;
off = (uintptr*)p - (uintptr*)arena_start;
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
bits = *bitp>>shift;
if((bits & (bitAllocated|bitMarked)) == bitAllocated) {
// Find the exact byte for which the special was setup
// (as opposed to object beginning).
p = (byte*)(s->start << PageShift) + special->offset;
// about to free object: splice out special record
y = special;
special = special->next;
*specialp = special;
if(!runtime·freespecial(y, p, size)) {
// stop freeing of object if it has a finalizer
*bitp |= bitMarked << shift;
}
} else {
// object is still live: keep special record
specialp = &special->next;
special = *specialp;
}
}
type_data = (byte*)s->types.data;
type_data_inc = sizeof(uintptr);
compression = s->types.compression;
switch(compression) {
case MTypes_Bytes:
type_data += 8*sizeof(uintptr);
type_data_inc = 1;
break;
}
// Sweep through n objects of given size starting at p.
// This thread owns the span now, so it can manipulate
// the block bitmap without atomic operations.
p = (byte*)(s->start << PageShift);
for(; n > 0; n--, p += size, type_data+=type_data_inc) {
off = (uintptr*)p - (uintptr*)arena_start;
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
bits = *bitp>>shift;
if((bits & bitAllocated) == 0)
continue;
if((bits & bitMarked) != 0) {
*bitp &= ~(bitMarked<<shift);
continue;
}
// Clear mark, scan, and special bits.
*bitp &= ~((bitScan|bitMarked|bitSpecial)<<shift);
if(cl == 0) {
// Free large span.
runtime·unmarkspan(p, 1<<PageShift);
*(uintptr*)p = (uintptr)0xdeaddeaddeaddeadll; // needs zeroing
if(runtime·debug.efence)
runtime·SysFree(p, size, &mstats.gc_sys);
else
runtime·MHeap_Free(&runtime·mheap, s, 1);
c->local_nlargefree++;
c->local_largefree += size;
} else {
// Free small object.
switch(compression) {
case MTypes_Words:
*(uintptr*)type_data = 0;
break;
case MTypes_Bytes:
*(byte*)type_data = 0;
break;
}
if(size > 2*sizeof(uintptr))
((uintptr*)p)[1] = (uintptr)0xdeaddeaddeaddeadll; // mark as "needs to be zeroed"
else if(size > sizeof(uintptr))
((uintptr*)p)[1] = 0;
end->next = (MLink*)p;
end = (MLink*)p;
nfree++;
}
}
if(nfree) {
c->local_nsmallfree[cl] += nfree;
c->local_cachealloc -= nfree * size;
runtime·MCentral_FreeSpan(&runtime·mheap.central[cl], s, nfree, head.next, end);
}
}
static void
dumpspan(uint32 idx)
{
int32 sizeclass, n, npages, i, column;
uintptr size;
byte *p;
byte *arena_start;
MSpan *s;
bool allocated, special;
s = runtime·mheap.allspans[idx];
if(s->state != MSpanInUse)
return;
arena_start = runtime·mheap.arena_start;
p = (byte*)(s->start << PageShift);
sizeclass = s->sizeclass;
size = s->elemsize;
if(sizeclass == 0) {
n = 1;
} else {
npages = runtime·class_to_allocnpages[sizeclass];
n = (npages << PageShift) / size;
}
runtime·printf("%p .. %p:\n", p, p+n*size);
column = 0;
for(; n>0; n--, p+=size) {
uintptr off, *bitp, shift, bits;
off = (uintptr*)p - (uintptr*)arena_start;
bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
bits = *bitp>>shift;
allocated = ((bits & bitAllocated) != 0);
special = ((bits & bitSpecial) != 0);
for(i=0; i<size; i+=sizeof(void*)) {
if(column == 0) {
runtime·printf("\t");
}
if(i == 0) {
runtime·printf(allocated ? "(" : "[");
runtime·printf(special ? "@" : "");
runtime·printf("%p: ", p+i);
} else {
runtime·printf(" ");
}
runtime·printf("%p", *(void**)(p+i));
if(i+sizeof(void*) >= size) {
runtime·printf(allocated ? ") " : "] ");
}
column++;
if(column == 8) {
runtime·printf("\n");
column = 0;
}
}
}
runtime·printf("\n");
}
// A debugging function to dump the contents of memory
void
runtime·memorydump(void)
{
uint32 spanidx;
for(spanidx=0; spanidx<runtime·mheap.nspan; spanidx++) {
dumpspan(spanidx);
}
}
void
runtime·gchelper(void)
{
int32 nproc;
gchelperstart();
// parallel mark for over gc roots
runtime·parfordo(work.markfor);
// help other threads scan secondary blocks
scanblock(nil, true);
runtime·parfordo(work.sweepfor);
bufferList[m->helpgc].busy = 0;
nproc = work.nproc; // work.nproc can change right after we increment work.ndone
if(runtime·xadd(&work.ndone, +1) == nproc-1)
runtime·notewakeup(&work.alldone);
}
#define GcpercentUnknown (-2)
// Initialized from $GOGC. GOGC=off means no gc.
//
// Next gc is after we've allocated an extra amount of
// memory proportional to the amount already in use.
// If gcpercent=100 and we're using 4M, we'll gc again
// when we get to 8M. This keeps the gc cost in linear
// proportion to the allocation cost. Adjusting gcpercent
// just changes the linear constant (and also the amount of
// extra memory used).
static int32 gcpercent = GcpercentUnknown;
static void
cachestats(void)
{
MCache *c;
P *p, **pp;
for(pp=runtime·allp; p=*pp; pp++) {
c = p->mcache;
if(c==nil)
continue;
runtime·purgecachedstats(c);
}
}
static void
flushallmcaches(void)
{
P *p, **pp;
MCache *c;
// Flush MCache's to MCentral.
for(pp=runtime·allp; p=*pp; pp++) {
c = p->mcache;
if(c==nil)
continue;
runtime·MCache_ReleaseAll(c);
}
}
static void
updatememstats(GCStats *stats)
{
M *mp;
MSpan *s;
int32 i;
uint64 stacks_inuse, smallfree;
uint64 *src, *dst;
if(stats)
runtime·memclr((byte*)stats, sizeof(*stats));
stacks_inuse = 0;
for(mp=runtime·allm; mp; mp=mp->alllink) {
stacks_inuse += mp->stackinuse*FixedStack;
if(stats) {
src = (uint64*)&mp->gcstats;
dst = (uint64*)stats;
for(i=0; i<sizeof(*stats)/sizeof(uint64); i++)
dst[i] += src[i];
runtime·memclr((byte*)&mp->gcstats, sizeof(mp->gcstats));
}
}
mstats.stacks_inuse = stacks_inuse;
mstats.mcache_inuse = runtime·mheap.cachealloc.inuse;
mstats.mspan_inuse = runtime·mheap.spanalloc.inuse;
mstats.sys = mstats.heap_sys + mstats.stacks_sys + mstats.mspan_sys +
mstats.mcache_sys + mstats.buckhash_sys + mstats.gc_sys + mstats.other_sys;
// Calculate memory allocator stats.
// During program execution we only count number of frees and amount of freed memory.
// Current number of alive object in the heap and amount of alive heap memory
// are calculated by scanning all spans.
// Total number of mallocs is calculated as number of frees plus number of alive objects.
// Similarly, total amount of allocated memory is calculated as amount of freed memory
// plus amount of alive heap memory.
mstats.alloc = 0;
mstats.total_alloc = 0;
mstats.nmalloc = 0;
mstats.nfree = 0;
for(i = 0; i < nelem(mstats.by_size); i++) {
mstats.by_size[i].nmalloc = 0;
mstats.by_size[i].nfree = 0;
}
// Flush MCache's to MCentral.
flushallmcaches();
// Aggregate local stats.
cachestats();
// Scan all spans and count number of alive objects.
for(i = 0; i < runtime·mheap.nspan; i++) {
s = runtime·mheap.allspans[i];
if(s->state != MSpanInUse)
continue;
if(s->sizeclass == 0) {
mstats.nmalloc++;
mstats.alloc += s->elemsize;
} else {
mstats.nmalloc += s->ref;
mstats.by_size[s->sizeclass].nmalloc += s->ref;
mstats.alloc += s->ref*s->elemsize;
}
}
// Aggregate by size class.
smallfree = 0;
mstats.nfree = runtime·mheap.nlargefree;
for(i = 0; i < nelem(mstats.by_size); i++) {
mstats.nfree += runtime·mheap.nsmallfree[i];
mstats.by_size[i].nfree = runtime·mheap.nsmallfree[i];
mstats.by_size[i].nmalloc += runtime·mheap.nsmallfree[i];
smallfree += runtime·mheap.nsmallfree[i] * runtime·class_to_size[i];
}
mstats.nmalloc += mstats.nfree;
// Calculate derived stats.
mstats.total_alloc = mstats.alloc + runtime·mheap.largefree + smallfree;
mstats.heap_alloc = mstats.alloc;
mstats.heap_objects = mstats.nmalloc - mstats.nfree;
}
// Structure of arguments passed to function gc().
// This allows the arguments to be passed via runtime·mcall.
struct gc_args
{
int64 start_time; // start time of GC in ns (just before stoptheworld)
};
static void gc(struct gc_args *args);
static void mgc(G *gp);
static int32
readgogc(void)
{
byte *p;
p = runtime·getenv("GOGC");
if(p == nil || p[0] == '\0')
return 100;
if(runtime·strcmp(p, (byte*)"off") == 0)
return -1;
return runtime·atoi(p);
}
static FuncVal runfinqv = {runfinq};
void
runtime·gc(int32 force)
{
struct gc_args a;
int32 i;
// The atomic operations are not atomic if the uint64s
// are not aligned on uint64 boundaries. This has been
// a problem in the past.
if((((uintptr)&work.empty) & 7) != 0)
runtime·throw("runtime: gc work buffer is misaligned");
if((((uintptr)&work.full) & 7) != 0)
runtime·throw("runtime: gc work buffer is misaligned");
// The gc is turned off (via enablegc) until
// the bootstrap has completed.
// Also, malloc gets called in the guts
// of a number of libraries that might be
// holding locks. To avoid priority inversion
// problems, don't bother trying to run gc
// while holding a lock. The next mallocgc
// without a lock will do the gc instead.
if(!mstats.enablegc || g == m->g0 || m->locks > 0 || runtime·panicking)
return;
if(gcpercent == GcpercentUnknown) { // first time through
runtime·lock(&runtime·mheap);
if(gcpercent == GcpercentUnknown)
gcpercent = readgogc();
runtime·unlock(&runtime·mheap);
}
if(gcpercent < 0)
return;
runtime·semacquire(&runtime·worldsema, false);
if(!force && mstats.heap_alloc < mstats.next_gc) {
// typically threads which lost the race to grab
// worldsema exit here when gc is done.
runtime·semrelease(&runtime·worldsema);
return;
}
// Ok, we're doing it! Stop everybody else
a.start_time = runtime·nanotime();
m->gcing = 1;
runtime·stoptheworld();
if(runtime·debug.allocfreetrace)
runtime·MProf_TraceGC();
clearpools();
// Run gc on the g0 stack. We do this so that the g stack
// we're currently running on will no longer change. Cuts
// the root set down a bit (g0 stacks are not scanned, and
// we don't need to scan gc's internal state). Also an
// enabler for copyable stacks.
for(i = 0; i < (runtime·debug.gctrace > 1 ? 2 : 1); i++) {
// switch to g0, call gc(&a), then switch back
g->param = &a;
g->status = Gwaiting;
g->waitreason = "garbage collection";
runtime·mcall(mgc);
// record a new start time in case we're going around again
a.start_time = runtime·nanotime();
}
// all done
m->gcing = 0;
m->locks++;
runtime·semrelease(&runtime·worldsema);
runtime·starttheworld();
m->locks--;
// now that gc is done, kick off finalizer thread if needed
if(finq != nil) {
runtime·lock(&finlock);
// kick off or wake up goroutine to run queued finalizers
if(fing == nil)
fing = runtime·newproc1(&runfinqv, nil, 0, 0, runtime·gc);
else if(fingwait) {
fingwait = 0;
runtime·ready(fing);
}
runtime·unlock(&finlock);
}
// give the queued finalizers, if any, a chance to run
runtime·gosched();
}
static void
mgc(G *gp)
{
gc(gp->param);
gp->param = nil;
gp->status = Grunning;
runtime·gogo(&gp->sched);
}
static void
gc(struct gc_args *args)
{
int64 t0, t1, t2, t3, t4;
uint64 heap0, heap1, obj0, obj1, ninstr;
GCStats stats;
M *mp;
uint32 i;
Eface eface;
t0 = args->start_time;
work.tstart = args->start_time;
if(CollectStats)
runtime·memclr((byte*)&gcstats, sizeof(gcstats));
for(mp=runtime·allm; mp; mp=mp->alllink)
runtime·settype_flush(mp);
heap0 = 0;
obj0 = 0;
if(runtime·debug.gctrace) {
updatememstats(nil);
heap0 = mstats.heap_alloc;
obj0 = mstats.nmalloc - mstats.nfree;
}
m->locks++; // disable gc during mallocs in parforalloc
if(work.markfor == nil)
work.markfor = runtime·parforalloc(MaxGcproc);
if(work.sweepfor == nil)
work.sweepfor = runtime·parforalloc(MaxGcproc);
m->locks--;
if(itabtype == nil) {
// get C pointer to the Go type "itab"
runtime·gc_itab_ptr(&eface);
itabtype = ((PtrType*)eface.type)->elem;
}
work.nwait = 0;
work.ndone = 0;
work.nproc = runtime·gcprocs();
runtime·parforsetup(work.markfor, work.nproc, RootCount + runtime·allglen, nil, false, markroot);
runtime·parforsetup(work.sweepfor, work.nproc, runtime·mheap.nspan, nil, true, sweepspan);
if(work.nproc > 1) {
runtime·noteclear(&work.alldone);
runtime·helpgc(work.nproc);
}
t1 = runtime·nanotime();
gchelperstart();
runtime·parfordo(work.markfor);
scanblock(nil, true);
t2 = runtime·nanotime();
runtime·parfordo(work.sweepfor);
bufferList[m->helpgc].busy = 0;
t3 = runtime·nanotime();
if(work.nproc > 1)
runtime·notesleep(&work.alldone);
cachestats();
mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100;
t4 = runtime·nanotime();
mstats.last_gc = t4;
mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t4 - t0;
mstats.pause_total_ns += t4 - t0;
mstats.numgc++;
if(mstats.debuggc)
runtime·printf("pause %D\n", t4-t0);
if(runtime·debug.gctrace) {
updatememstats(&stats);
heap1 = mstats.heap_alloc;
obj1 = mstats.nmalloc - mstats.nfree;
stats.nprocyield += work.sweepfor->nprocyield;
stats.nosyield += work.sweepfor->nosyield;
stats.nsleep += work.sweepfor->nsleep;
runtime·printf("gc%d(%d): %D+%D+%D ms, %D -> %D MB %D -> %D (%D-%D) objects,"
" %D(%D) handoff, %D(%D) steal, %D/%D/%D yields\n",
mstats.numgc, work.nproc, (t2-t1)/1000000, (t3-t2)/1000000, (t1-t0+t4-t3)/1000000,
heap0>>20, heap1>>20, obj0, obj1,
mstats.nmalloc, mstats.nfree,
stats.nhandoff, stats.nhandoffcnt,
work.sweepfor->nsteal, work.sweepfor->nstealcnt,
stats.nprocyield, stats.nosyield, stats.nsleep);
if(CollectStats) {
runtime·printf("scan: %D bytes, %D objects, %D untyped, %D types from MSpan\n",
gcstats.nbytes, gcstats.obj.cnt, gcstats.obj.notype, gcstats.obj.typelookup);
if(gcstats.ptr.cnt != 0)
runtime·printf("avg ptrbufsize: %D (%D/%D)\n",
gcstats.ptr.sum/gcstats.ptr.cnt, gcstats.ptr.sum, gcstats.ptr.cnt);
if(gcstats.obj.cnt != 0)
runtime·printf("avg nobj: %D (%D/%D)\n",
gcstats.obj.sum/gcstats.obj.cnt, gcstats.obj.sum, gcstats.obj.cnt);
runtime·printf("rescans: %D, %D bytes\n", gcstats.rescan, gcstats.rescanbytes);
runtime·printf("instruction counts:\n");
ninstr = 0;
for(i=0; i<nelem(gcstats.instr); i++) {
runtime·printf("\t%d:\t%D\n", i, gcstats.instr[i]);
ninstr += gcstats.instr[i];
}
runtime·printf("\ttotal:\t%D\n", ninstr);
runtime·printf("putempty: %D, getfull: %D\n", gcstats.putempty, gcstats.getfull);
runtime·printf("markonly base lookup: bit %D word %D span %D\n", gcstats.markonly.foundbit, gcstats.markonly.foundword, gcstats.markonly.foundspan);
runtime·printf("flushptrbuf base lookup: bit %D word %D span %D\n", gcstats.flushptrbuf.foundbit, gcstats.flushptrbuf.foundword, gcstats.flushptrbuf.foundspan);
}
}
runtime·MProf_GC();
}
extern uintptr runtime·sizeof_C_MStats;
void
runtime·ReadMemStats(MStats *stats)
{
// Have to acquire worldsema to stop the world,
// because stoptheworld can only be used by
// one goroutine at a time, and there might be
// a pending garbage collection already calling it.
runtime·semacquire(&runtime·worldsema, false);
m->gcing = 1;
runtime·stoptheworld();
updatememstats(nil);
// Size of the trailing by_size array differs between Go and C,
// NumSizeClasses was changed, but we can not change Go struct because of backward compatibility.
runtime·memcopy(runtime·sizeof_C_MStats, stats, &mstats);
m->gcing = 0;
m->locks++;
runtime·semrelease(&runtime·worldsema);
runtime·starttheworld();
m->locks--;
}
void
runtimedebug·readGCStats(Slice *pauses)
{
uint64 *p;
uint32 i, n;
// Calling code in runtime/debug should make the slice large enough.
if(pauses->cap < nelem(mstats.pause_ns)+3)
runtime·throw("runtime: short slice passed to readGCStats");
// Pass back: pauses, last gc (absolute time), number of gc, total pause ns.
p = (uint64*)pauses->array;
runtime·lock(&runtime·mheap);
n = mstats.numgc;
if(n > nelem(mstats.pause_ns))
n = nelem(mstats.pause_ns);
// The pause buffer is circular. The most recent pause is at
// pause_ns[(numgc-1)%nelem(pause_ns)], and then backward
// from there to go back farther in time. We deliver the times
// most recent first (in p[0]).
for(i=0; i<n; i++)
p[i] = mstats.pause_ns[(mstats.numgc-1-i)%nelem(mstats.pause_ns)];
p[n] = mstats.last_gc;
p[n+1] = mstats.numgc;
p[n+2] = mstats.pause_total_ns;
runtime·unlock(&runtime·mheap);
pauses->len = n+3;
}
void
runtimedebug·setGCPercent(intgo in, intgo out)
{
runtime·lock(&runtime·mheap);
if(gcpercent == GcpercentUnknown)
gcpercent = readgogc();
out = gcpercent;
if(in < 0)
in = -1;
gcpercent = in;
runtime·unlock(&runtime·mheap);
FLUSH(&out);
}
static void
gchelperstart(void)
{
if(m->helpgc < 0 || m->helpgc >= MaxGcproc)
runtime·throw("gchelperstart: bad m->helpgc");
if(runtime·xchg(&bufferList[m->helpgc].busy, 1))
runtime·throw("gchelperstart: already busy");
if(g != m->g0)
runtime·throw("gchelper not running on g0 stack");
}
static void
runfinq(void)
{
Finalizer *f;
FinBlock *fb, *next;
byte *frame;
uint32 framesz, framecap, i;
Eface *ef, ef1;
frame = nil;
framecap = 0;
for(;;) {
runtime·lock(&finlock);
fb = finq;
finq = nil;
if(fb == nil) {
fingwait = 1;
runtime·parkunlock(&finlock, "finalizer wait");
continue;
}
runtime·unlock(&finlock);
if(raceenabled)
runtime·racefingo();
for(; fb; fb=next) {
next = fb->next;
for(i=0; i<fb->cnt; i++) {
f = &fb->fin[i];
framesz = sizeof(Eface) + f->nret;
if(framecap < framesz) {
runtime·free(frame);
// The frame does not contain pointers interesting for GC,
// all not yet finalized objects are stored in finc.
// If we do not mark it as FlagNoScan,
// the last finalized object is not collected.
frame = runtime·mallocgc(framesz, 0, FlagNoScan|FlagNoInvokeGC);
framecap = framesz;
}
if(f->fint == nil)
runtime·throw("missing type in runfinq");
if(f->fint->kind == KindPtr) {
// direct use of pointer
*(void**)frame = f->arg;
} else if(((InterfaceType*)f->fint)->mhdr.len == 0) {
// convert to empty interface
ef = (Eface*)frame;
ef->type = f->ot;
ef->data = f->arg;
} else {
// convert to interface with methods, via empty interface.
ef1.type = f->ot;
ef1.data = f->arg;
if(!runtime·ifaceE2I2((InterfaceType*)f->fint, ef1, (Iface*)frame))
runtime·throw("invalid type conversion in runfinq");
}
reflect·call(f->fn, frame, framesz);
f->fn = nil;
f->arg = nil;
f->ot = nil;
}
fb->cnt = 0;
fb->next = finc;
finc = fb;
}
runtime·gc(1); // trigger another gc to clean up the finalized objects, if possible
}
}
void
runtime·marknogc(void *v)
{
uintptr *b, obits, bits, off, shift;
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
for(;;) {
obits = *b;
if((obits>>shift & bitMask) != bitAllocated)
runtime·throw("bad initial state for marknogc");
bits = (obits & ~(bitAllocated<<shift)) | bitBlockBoundary<<shift;
if(runtime·gomaxprocs == 1) {
*b = bits;
break;
} else {
// more than one goroutine is potentially running: use atomic op
if(runtime·casp((void**)b, (void*)obits, (void*)bits))
break;
}
}
}
void
runtime·markscan(void *v)
{
uintptr *b, obits, bits, off, shift;
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
for(;;) {
obits = *b;
if((obits>>shift & bitMask) != bitAllocated)
runtime·throw("bad initial state for markscan");
bits = obits | bitScan<<shift;
if(runtime·gomaxprocs == 1) {
*b = bits;
break;
} else {
// more than one goroutine is potentially running: use atomic op
if(runtime·casp((void**)b, (void*)obits, (void*)bits))
break;
}
}
}
// mark the block at v of size n as freed.
void
runtime·markfreed(void *v, uintptr n)
{
uintptr *b, obits, bits, off, shift;
if(0)
runtime·printf("markfreed %p+%p\n", v, n);
if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
runtime·throw("markfreed: bad pointer");
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
for(;;) {
obits = *b;
// This could be a free of a gc-eligible object (bitAllocated + others) or
// a FlagNoGC object (bitBlockBoundary set). In either case, we revert to
// a simple no-scan allocated object because it is going on a free list.
bits = (obits & ~(bitMask<<shift)) | (bitAllocated<<shift);
if(runtime·gomaxprocs == 1) {
*b = bits;
break;
} else {
// more than one goroutine is potentially running: use atomic op
if(runtime·casp((void**)b, (void*)obits, (void*)bits))
break;
}
}
}
// check that the block at v of size n is marked freed.
void
runtime·checkfreed(void *v, uintptr n)
{
uintptr *b, bits, off, shift;
if(!runtime·checking)
return;
if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
return; // not allocated, so okay
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
bits = *b>>shift;
if((bits & bitAllocated) != 0) {
runtime·printf("checkfreed %p+%p: off=%p have=%p\n",
v, n, off, bits & bitMask);
runtime·throw("checkfreed: not freed");
}
}
// mark the span of memory at v as having n blocks of the given size.
// if leftover is true, there is left over space at the end of the span.
void
runtime·markspan(void *v, uintptr size, uintptr n, bool leftover)
{
uintptr *b, off, shift, i;
byte *p;
if((byte*)v+size*n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
runtime·throw("markspan: bad pointer");
if(runtime·checking) {
// bits should be all zero at the start
off = (byte*)v + size - runtime·mheap.arena_start;
b = (uintptr*)(runtime·mheap.arena_start - off/wordsPerBitmapWord);
for(i = 0; i < size/PtrSize/wordsPerBitmapWord; i++) {
if(b[i] != 0)
runtime·throw("markspan: span bits not zero");
}
}
p = v;
if(leftover) // mark a boundary just past end of last block too
n++;
for(; n-- > 0; p += size) {
// Okay to use non-atomic ops here, because we control
// the entire span, and each bitmap word has bits for only
// one span, so no other goroutines are changing these
// bitmap words.
off = (uintptr*)p - (uintptr*)runtime·mheap.arena_start; // word offset
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
shift = off % wordsPerBitmapWord;
*b = (*b & ~(bitMask<<shift)) | (bitAllocated<<shift);
}
}
// unmark the span of memory at v of length n bytes.
void
runtime·unmarkspan(void *v, uintptr n)
{
uintptr *p, *b, off;
if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
runtime·throw("markspan: bad pointer");
p = v;
off = p - (uintptr*)runtime·mheap.arena_start; // word offset
if(off % wordsPerBitmapWord != 0)
runtime·throw("markspan: unaligned pointer");
b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1;
n /= PtrSize;
if(n%wordsPerBitmapWord != 0)
runtime·throw("unmarkspan: unaligned length");
// Okay to use non-atomic ops here, because we control
// the entire span, and each bitmap word has bits for only
// one span, so no other goroutines are changing these
// bitmap words.
n /= wordsPerBitmapWord;
while(n-- > 0)
*b-- = 0;
}
void
runtime·MHeap_MapBits(MHeap *h)
{
// Caller has added extra mappings to the arena.
// Add extra mappings of bitmap words as needed.
// We allocate extra bitmap pieces in chunks of bitmapChunk.
enum {
bitmapChunk = 8192
};
uintptr n;
n = (h->arena_used - h->arena_start) / wordsPerBitmapWord;
n = ROUND(n, bitmapChunk);
if(h->bitmap_mapped >= n)
return;
runtime·SysMap(h->arena_start - n, n - h->bitmap_mapped, &mstats.gc_sys);
h->bitmap_mapped = n;
}