mirror of
https://github.com/golang/go
synced 2024-11-26 19:41:19 -07:00
6f90ee36e9
Discovered by Junchen Li on CL 246858, the comparison before p and z are swapped can be simplified from pe < ze || (pe == ze && (pm1 < zm1 || (pm1 == zm1 && pm2 < zm2))) to pe < ze || pe == ze && pm1 < zm1 because zm2 is initialized to 0 before the branch. Change-Id: Iee92d570038df2b0f8941ef6e422a022654ab2d6 Reviewed-on: https://go-review.googlesource.com/c/go/+/247241 Run-TryBot: Akhil Indurti <aindurti@gmail.com> Run-TryBot: Emmanuel Odeke <emmanuel@orijtech.com> Trust: Emmanuel Odeke <emmanuel@orijtech.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Keith Randall <khr@golang.org>
171 lines
4.5 KiB
Go
171 lines
4.5 KiB
Go
// Copyright 2019 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package math
|
|
|
|
import "math/bits"
|
|
|
|
func zero(x uint64) uint64 {
|
|
if x == 0 {
|
|
return 1
|
|
}
|
|
return 0
|
|
// branchless:
|
|
// return ((x>>1 | x&1) - 1) >> 63
|
|
}
|
|
|
|
func nonzero(x uint64) uint64 {
|
|
if x != 0 {
|
|
return 1
|
|
}
|
|
return 0
|
|
// branchless:
|
|
// return 1 - ((x>>1|x&1)-1)>>63
|
|
}
|
|
|
|
func shl(u1, u2 uint64, n uint) (r1, r2 uint64) {
|
|
r1 = u1<<n | u2>>(64-n) | u2<<(n-64)
|
|
r2 = u2 << n
|
|
return
|
|
}
|
|
|
|
func shr(u1, u2 uint64, n uint) (r1, r2 uint64) {
|
|
r2 = u2>>n | u1<<(64-n) | u1>>(n-64)
|
|
r1 = u1 >> n
|
|
return
|
|
}
|
|
|
|
// shrcompress compresses the bottom n+1 bits of the two-word
|
|
// value into a single bit. the result is equal to the value
|
|
// shifted to the right by n, except the result's 0th bit is
|
|
// set to the bitwise OR of the bottom n+1 bits.
|
|
func shrcompress(u1, u2 uint64, n uint) (r1, r2 uint64) {
|
|
// TODO: Performance here is really sensitive to the
|
|
// order/placement of these branches. n == 0 is common
|
|
// enough to be in the fast path. Perhaps more measurement
|
|
// needs to be done to find the optimal order/placement?
|
|
switch {
|
|
case n == 0:
|
|
return u1, u2
|
|
case n == 64:
|
|
return 0, u1 | nonzero(u2)
|
|
case n >= 128:
|
|
return 0, nonzero(u1 | u2)
|
|
case n < 64:
|
|
r1, r2 = shr(u1, u2, n)
|
|
r2 |= nonzero(u2 & (1<<n - 1))
|
|
case n < 128:
|
|
r1, r2 = shr(u1, u2, n)
|
|
r2 |= nonzero(u1&(1<<(n-64)-1) | u2)
|
|
}
|
|
return
|
|
}
|
|
|
|
func lz(u1, u2 uint64) (l int32) {
|
|
l = int32(bits.LeadingZeros64(u1))
|
|
if l == 64 {
|
|
l += int32(bits.LeadingZeros64(u2))
|
|
}
|
|
return l
|
|
}
|
|
|
|
// split splits b into sign, biased exponent, and mantissa.
|
|
// It adds the implicit 1 bit to the mantissa for normal values,
|
|
// and normalizes subnormal values.
|
|
func split(b uint64) (sign uint32, exp int32, mantissa uint64) {
|
|
sign = uint32(b >> 63)
|
|
exp = int32(b>>52) & mask
|
|
mantissa = b & fracMask
|
|
|
|
if exp == 0 {
|
|
// Normalize value if subnormal.
|
|
shift := uint(bits.LeadingZeros64(mantissa) - 11)
|
|
mantissa <<= shift
|
|
exp = 1 - int32(shift)
|
|
} else {
|
|
// Add implicit 1 bit
|
|
mantissa |= 1 << 52
|
|
}
|
|
return
|
|
}
|
|
|
|
// FMA returns x * y + z, computed with only one rounding.
|
|
// (That is, FMA returns the fused multiply-add of x, y, and z.)
|
|
func FMA(x, y, z float64) float64 {
|
|
bx, by, bz := Float64bits(x), Float64bits(y), Float64bits(z)
|
|
|
|
// Inf or NaN or zero involved. At most one rounding will occur.
|
|
if x == 0.0 || y == 0.0 || z == 0.0 || bx&uvinf == uvinf || by&uvinf == uvinf {
|
|
return x*y + z
|
|
}
|
|
// Handle non-finite z separately. Evaluating x*y+z where
|
|
// x and y are finite, but z is infinite, should always result in z.
|
|
if bz&uvinf == uvinf {
|
|
return z
|
|
}
|
|
|
|
// Inputs are (sub)normal.
|
|
// Split x, y, z into sign, exponent, mantissa.
|
|
xs, xe, xm := split(bx)
|
|
ys, ye, ym := split(by)
|
|
zs, ze, zm := split(bz)
|
|
|
|
// Compute product p = x*y as sign, exponent, two-word mantissa.
|
|
// Start with exponent. "is normal" bit isn't subtracted yet.
|
|
pe := xe + ye - bias + 1
|
|
|
|
// pm1:pm2 is the double-word mantissa for the product p.
|
|
// Shift left to leave top bit in product. Effectively
|
|
// shifts the 106-bit product to the left by 21.
|
|
pm1, pm2 := bits.Mul64(xm<<10, ym<<11)
|
|
zm1, zm2 := zm<<10, uint64(0)
|
|
ps := xs ^ ys // product sign
|
|
|
|
// normalize to 62nd bit
|
|
is62zero := uint((^pm1 >> 62) & 1)
|
|
pm1, pm2 = shl(pm1, pm2, is62zero)
|
|
pe -= int32(is62zero)
|
|
|
|
// Swap addition operands so |p| >= |z|
|
|
if pe < ze || pe == ze && pm1 < zm1 {
|
|
ps, pe, pm1, pm2, zs, ze, zm1, zm2 = zs, ze, zm1, zm2, ps, pe, pm1, pm2
|
|
}
|
|
|
|
// Align significands
|
|
zm1, zm2 = shrcompress(zm1, zm2, uint(pe-ze))
|
|
|
|
// Compute resulting significands, normalizing if necessary.
|
|
var m, c uint64
|
|
if ps == zs {
|
|
// Adding (pm1:pm2) + (zm1:zm2)
|
|
pm2, c = bits.Add64(pm2, zm2, 0)
|
|
pm1, _ = bits.Add64(pm1, zm1, c)
|
|
pe -= int32(^pm1 >> 63)
|
|
pm1, m = shrcompress(pm1, pm2, uint(64+pm1>>63))
|
|
} else {
|
|
// Subtracting (pm1:pm2) - (zm1:zm2)
|
|
// TODO: should we special-case cancellation?
|
|
pm2, c = bits.Sub64(pm2, zm2, 0)
|
|
pm1, _ = bits.Sub64(pm1, zm1, c)
|
|
nz := lz(pm1, pm2)
|
|
pe -= nz
|
|
m, pm2 = shl(pm1, pm2, uint(nz-1))
|
|
m |= nonzero(pm2)
|
|
}
|
|
|
|
// Round and break ties to even
|
|
if pe > 1022+bias || pe == 1022+bias && (m+1<<9)>>63 == 1 {
|
|
// rounded value overflows exponent range
|
|
return Float64frombits(uint64(ps)<<63 | uvinf)
|
|
}
|
|
if pe < 0 {
|
|
n := uint(-pe)
|
|
m = m>>n | nonzero(m&(1<<n-1))
|
|
pe = 0
|
|
}
|
|
m = ((m + 1<<9) >> 10) & ^zero((m&(1<<10-1))^1<<9)
|
|
pe &= -int32(nonzero(m))
|
|
return Float64frombits(uint64(ps)<<63 + uint64(pe)<<52 + m)
|
|
}
|