1
0
mirror of https://github.com/golang/go synced 2024-11-19 14:34:42 -07:00
go/ssa/interp/interp.go
Alan Donovan 7072253af5 go.tools/ssa: fixes, cleanups, cosmetic tweaks.
Fix bug: the Signature for an interface method wrapper
erroneously had a non-nil receiver.

Function:
- Set Pkg field non-nil even for wrappers.
  It is equal to that of the wrapped function.
  Only wrappers of error.Error
  (and its embeddings in other interfaces) may have nil.
  Sanity checker now asserts this.
- FullName() now uses .Synthetic field to discriminate
  synthetic methods, not Pkg==nil.
- Fullname() uses new relType() utility to print receiver type
  name unqualified if it belongs to the same package.
  (Alloc.String also uses relType utility.)

CallCommon:
- Description(): fix switch logic broken when we
  eliminated the Recv field.
- better docs.

R=david.crawshaw, crawshaw, gri
CC=golang-dev
https://golang.org/cl/13057043
2013-08-19 15:38:30 -04:00

632 lines
16 KiB
Go

// Package ssa/interp defines an interpreter for the SSA
// representation of Go programs.
//
// This interpreter is provided as an adjunct for testing the SSA
// construction algorithm. Its purpose is to provide a minimal
// metacircular implementation of the dynamic semantics of each SSA
// instruction. It is not, and will never be, a production-quality Go
// interpreter.
//
// The following is a partial list of Go features that are currently
// unsupported or incomplete in the interpreter.
//
// * Unsafe operations, including all uses of unsafe.Pointer, are
// impossible to support given the "boxed" value representation we
// have chosen.
//
// * The reflect package is only partially implemented.
//
// * "sync/atomic" operations are not currently atomic due to the
// "boxed" value representation: it is not possible to read, modify
// and write an interface value atomically. As a consequence, Mutexes
// are currently broken. TODO(adonovan): provide a metacircular
// implementation of Mutex avoiding the broken atomic primitives.
//
// * recover is only partially implemented. Also, the interpreter
// makes no attempt to distinguish target panics from interpreter
// crashes.
//
// * map iteration is asymptotically inefficient.
//
// * the equivalence relation for structs doesn't skip over blank
// fields.
//
// * the sizes of the int, uint and uintptr types in the target
// program are assumed to be the same as those of the interpreter
// itself.
//
// * all values occupy space, even those of types defined by the spec
// to have zero size, e.g. struct{}. This can cause asymptotic
// performance degradation.
//
// * os.Exit is implemented using panic, causing deferred functions to
// run.
package interp
import (
"fmt"
"go/ast"
"go/token"
"os"
"reflect"
"runtime"
"code.google.com/p/go.tools/go/types"
"code.google.com/p/go.tools/ssa"
)
type status int
const (
stRunning status = iota
stComplete
stPanic
)
type continuation int
const (
kNext continuation = iota
kReturn
kJump
)
// Mode is a bitmask of options affecting the interpreter.
type Mode uint
const (
DisableRecover Mode = 1 << iota // Disable recover() in target programs; show interpreter crash instead.
EnableTracing // Print a trace of all instructions as they are interpreted.
)
type methodSet map[string]*ssa.Function
// State shared between all interpreted goroutines.
type interpreter struct {
prog *ssa.Program // the SSA program
globals map[ssa.Value]*value // addresses of global variables (immutable)
mode Mode // interpreter options
reflectPackage *ssa.Package // the fake reflect package
errorMethods methodSet // the method set of reflect.error, which implements the error interface.
rtypeMethods methodSet // the method set of rtype, which implements the reflect.Type interface.
}
type frame struct {
i *interpreter
caller *frame
fn *ssa.Function
block, prevBlock *ssa.BasicBlock
env map[ssa.Value]value // dynamic values of SSA variables
locals []value
defers []func()
result value
status status
panic interface{}
}
func (fr *frame) get(key ssa.Value) value {
switch key := key.(type) {
case nil:
// Hack; simplifies handling of optional attributes
// such as ssa.Slice.{Low,High}.
return nil
case *ssa.Function, *ssa.Builtin:
return key
case *ssa.Const:
return constValue(key)
case *ssa.Global:
if r, ok := fr.i.globals[key]; ok {
return r
}
}
if r, ok := fr.env[key]; ok {
return r
}
panic(fmt.Sprintf("get: no value for %T: %v", key, key.Name()))
}
func (fr *frame) rundefers() {
for i := range fr.defers {
if fr.i.mode&EnableTracing != 0 {
fmt.Fprintln(os.Stderr, "Invoking deferred function", i)
}
fr.defers[len(fr.defers)-1-i]()
}
fr.defers = fr.defers[:0]
}
// lookupMethod returns the method set for type typ, which may be one
// of the interpreter's fake types.
func lookupMethod(i *interpreter, typ types.Type, meth *types.Func) *ssa.Function {
switch typ {
case rtypeType:
return i.rtypeMethods[meth.Id()]
case errorType:
return i.errorMethods[meth.Id()]
}
return i.prog.Method(typ.MethodSet().Lookup(meth.Pkg(), meth.Name()))
}
// visitInstr interprets a single ssa.Instruction within the activation
// record frame. It returns a continuation value indicating where to
// read the next instruction from.
func visitInstr(fr *frame, instr ssa.Instruction) continuation {
switch instr := instr.(type) {
case *ssa.DebugRef:
// no-op
case *ssa.UnOp:
fr.env[instr] = unop(instr, fr.get(instr.X))
case *ssa.BinOp:
fr.env[instr] = binop(instr.Op, fr.get(instr.X), fr.get(instr.Y))
case *ssa.Call:
fn, args := prepareCall(fr, &instr.Call)
fr.env[instr] = call(fr.i, fr, instr.Pos(), fn, args)
case *ssa.ChangeInterface:
fr.env[instr] = fr.get(instr.X)
case *ssa.ChangeType:
fr.env[instr] = fr.get(instr.X) // (can't fail)
case *ssa.Convert:
fr.env[instr] = conv(instr.Type(), instr.X.Type(), fr.get(instr.X))
case *ssa.MakeInterface:
fr.env[instr] = iface{t: instr.X.Type(), v: fr.get(instr.X)}
case *ssa.Extract:
fr.env[instr] = fr.get(instr.Tuple).(tuple)[instr.Index]
case *ssa.Slice:
fr.env[instr] = slice(fr.get(instr.X), fr.get(instr.Low), fr.get(instr.High))
case *ssa.Ret:
switch len(instr.Results) {
case 0:
case 1:
fr.result = fr.get(instr.Results[0])
default:
var res []value
for _, r := range instr.Results {
res = append(res, fr.get(r))
}
fr.result = tuple(res)
}
return kReturn
case *ssa.RunDefers:
fr.rundefers()
case *ssa.Panic:
panic(targetPanic{fr.get(instr.X)})
case *ssa.Send:
fr.get(instr.Chan).(chan value) <- copyVal(fr.get(instr.X))
case *ssa.Store:
*fr.get(instr.Addr).(*value) = copyVal(fr.get(instr.Val))
case *ssa.If:
succ := 1
if fr.get(instr.Cond).(bool) {
succ = 0
}
fr.prevBlock, fr.block = fr.block, fr.block.Succs[succ]
return kJump
case *ssa.Jump:
fr.prevBlock, fr.block = fr.block, fr.block.Succs[0]
return kJump
case *ssa.Defer:
fn, args := prepareCall(fr, &instr.Call)
fr.defers = append(fr.defers, func() { call(fr.i, fr, instr.Pos(), fn, args) })
case *ssa.Go:
fn, args := prepareCall(fr, &instr.Call)
go call(fr.i, nil, instr.Pos(), fn, args)
case *ssa.MakeChan:
fr.env[instr] = make(chan value, asInt(fr.get(instr.Size)))
case *ssa.Alloc:
var addr *value
if instr.Heap {
// new
addr = new(value)
fr.env[instr] = addr
} else {
// local
addr = fr.env[instr].(*value)
}
*addr = zero(deref(instr.Type()))
case *ssa.MakeSlice:
slice := make([]value, asInt(fr.get(instr.Cap)))
tElt := instr.Type().Underlying().(*types.Slice).Elem()
for i := range slice {
slice[i] = zero(tElt)
}
fr.env[instr] = slice[:asInt(fr.get(instr.Len))]
case *ssa.MakeMap:
reserve := 0
if instr.Reserve != nil {
reserve = asInt(fr.get(instr.Reserve))
}
fr.env[instr] = makeMap(instr.Type().Underlying().(*types.Map).Key(), reserve)
case *ssa.Range:
fr.env[instr] = rangeIter(fr.get(instr.X), instr.X.Type())
case *ssa.Next:
fr.env[instr] = fr.get(instr.Iter).(iter).next()
case *ssa.FieldAddr:
x := fr.get(instr.X)
fr.env[instr] = &(*x.(*value)).(structure)[instr.Field]
case *ssa.Field:
fr.env[instr] = copyVal(fr.get(instr.X).(structure)[instr.Field])
case *ssa.IndexAddr:
x := fr.get(instr.X)
idx := fr.get(instr.Index)
switch x := x.(type) {
case []value:
fr.env[instr] = &x[asInt(idx)]
case *value: // *array
fr.env[instr] = &(*x).(array)[asInt(idx)]
default:
panic(fmt.Sprintf("unexpected x type in IndexAddr: %T", x))
}
case *ssa.Index:
fr.env[instr] = copyVal(fr.get(instr.X).(array)[asInt(fr.get(instr.Index))])
case *ssa.Lookup:
fr.env[instr] = lookup(instr, fr.get(instr.X), fr.get(instr.Index))
case *ssa.MapUpdate:
m := fr.get(instr.Map)
key := fr.get(instr.Key)
v := fr.get(instr.Value)
switch m := m.(type) {
case map[value]value:
m[key] = v
case *hashmap:
m.insert(key.(hashable), v)
default:
panic(fmt.Sprintf("illegal map type: %T", m))
}
case *ssa.TypeAssert:
fr.env[instr] = typeAssert(fr.i, instr, fr.get(instr.X).(iface))
case *ssa.MakeClosure:
var bindings []value
for _, binding := range instr.Bindings {
bindings = append(bindings, fr.get(binding))
}
fr.env[instr] = &closure{instr.Fn.(*ssa.Function), bindings}
case *ssa.Phi:
for i, pred := range instr.Block().Preds {
if fr.prevBlock == pred {
fr.env[instr] = fr.get(instr.Edges[i])
break
}
}
case *ssa.Select:
var cases []reflect.SelectCase
if !instr.Blocking {
cases = append(cases, reflect.SelectCase{
Dir: reflect.SelectDefault,
})
}
for _, state := range instr.States {
var dir reflect.SelectDir
if state.Dir == ast.RECV {
dir = reflect.SelectRecv
} else {
dir = reflect.SelectSend
}
var send reflect.Value
if state.Send != nil {
send = reflect.ValueOf(fr.get(state.Send))
}
cases = append(cases, reflect.SelectCase{
Dir: dir,
Chan: reflect.ValueOf(fr.get(state.Chan)),
Send: send,
})
}
chosen, recv, recvOk := reflect.Select(cases)
if !instr.Blocking {
chosen-- // default case should have index -1.
}
r := tuple{chosen, recvOk}
for i, st := range instr.States {
if st.Dir == ast.RECV {
var v value
if i == chosen && recvOk {
// No need to copy since send makes an unaliased copy.
v = recv.Interface().(value)
} else {
v = zero(st.Chan.Type().Underlying().(*types.Chan).Elem())
}
r = append(r, v)
}
}
fr.env[instr] = r
default:
panic(fmt.Sprintf("unexpected instruction: %T", instr))
}
// if val, ok := instr.(ssa.Value); ok {
// fmt.Println(toString(fr.env[val])) // debugging
// }
return kNext
}
// prepareCall determines the function value and argument values for a
// function call in a Call, Go or Defer instruction, performing
// interface method lookup if needed.
//
func prepareCall(fr *frame, call *ssa.CallCommon) (fn value, args []value) {
v := fr.get(call.Value)
if call.Method == nil {
// Function call.
fn = v
} else {
// Interface method invocation.
recv := v.(iface)
if recv.t == nil {
panic("method invoked on nil interface")
}
fn = lookupMethod(fr.i, recv.t, call.Method)
if fn == nil {
// Unreachable in well-typed programs.
panic(fmt.Sprintf("method set for dynamic type %v does not contain %s", recv.t, call.Method))
}
args = append(args, copyVal(recv.v))
}
for _, arg := range call.Args {
args = append(args, fr.get(arg))
}
return
}
// call interprets a call to a function (function, builtin or closure)
// fn with arguments args, returning its result.
// callpos is the position of the callsite.
//
func call(i *interpreter, caller *frame, callpos token.Pos, fn value, args []value) value {
switch fn := fn.(type) {
case *ssa.Function:
if fn == nil {
panic("call of nil function") // nil of func type
}
return callSSA(i, caller, callpos, fn, args, nil)
case *closure:
return callSSA(i, caller, callpos, fn.Fn, args, fn.Env)
case *ssa.Builtin:
return callBuiltin(caller, callpos, fn, args)
}
panic(fmt.Sprintf("cannot call %T", fn))
}
func loc(fset *token.FileSet, pos token.Pos) string {
if pos == token.NoPos {
return ""
}
return " at " + fset.Position(pos).String()
}
// callSSA interprets a call to function fn with arguments args,
// and lexical environment env, returning its result.
// callpos is the position of the callsite.
//
func callSSA(i *interpreter, caller *frame, callpos token.Pos, fn *ssa.Function, args []value, env []value) value {
if i.mode&EnableTracing != 0 {
fset := fn.Prog.Fset
// TODO(adonovan): fix: loc() lies for external functions.
fmt.Fprintf(os.Stderr, "Entering %s%s.\n", fn, loc(fset, fn.Pos()))
suffix := ""
if caller != nil {
suffix = ", resuming " + caller.fn.String() + loc(fset, callpos)
}
defer fmt.Fprintf(os.Stderr, "Leaving %s%s.\n", fn, suffix)
}
if fn.Enclosing == nil {
name := fn.String()
if ext := externals[name]; ext != nil {
if i.mode&EnableTracing != 0 {
fmt.Fprintln(os.Stderr, "\t(external)")
}
return ext(fn, args)
}
if fn.Blocks == nil {
panic("no code for function: " + name)
}
}
fr := &frame{
i: i,
caller: caller, // currently unused; for unwinding.
fn: fn,
env: make(map[ssa.Value]value),
block: fn.Blocks[0],
locals: make([]value, len(fn.Locals)),
}
for i, l := range fn.Locals {
fr.locals[i] = zero(deref(l.Type()))
fr.env[l] = &fr.locals[i]
}
for i, p := range fn.Params {
fr.env[p] = args[i]
}
for i, fv := range fn.FreeVars {
fr.env[fv] = env[i]
}
var instr ssa.Instruction
defer func() {
if fr.status != stComplete {
if fr.i.mode&DisableRecover != 0 {
return // let interpreter crash
}
fr.status = stPanic
fr.panic = recover()
}
fr.rundefers()
// Destroy the locals to avoid accidental use after return.
for i := range fn.Locals {
fr.locals[i] = bad{}
}
if fr.status == stPanic {
panic(fr.panic) // panic stack is not entirely clean
}
}()
for {
if i.mode&EnableTracing != 0 {
fmt.Fprintf(os.Stderr, ".%s:\n", fr.block)
}
block:
for _, instr = range fr.block.Instrs {
if i.mode&EnableTracing != 0 {
if v, ok := instr.(ssa.Value); ok {
fmt.Fprintln(os.Stderr, "\t", v.Name(), "=", instr)
} else {
fmt.Fprintln(os.Stderr, "\t", instr)
}
}
switch visitInstr(fr, instr) {
case kReturn:
fr.status = stComplete
return fr.result
case kNext:
// no-op
case kJump:
break block
}
}
}
panic("unreachable")
}
// setGlobal sets the value of a system-initialized global variable.
func setGlobal(i *interpreter, pkg *ssa.Package, name string, v value) {
if g, ok := i.globals[pkg.Var(name)]; ok {
*g = v
return
}
panic("no global variable: " + pkg.Object.Path() + "." + name)
}
// Interpret interprets the Go program whose main package is mainpkg.
// mode specifies various interpreter options. filename and args are
// the initial values of os.Args for the target program.
//
// Interpret returns the exit code of the program: 2 for panic (like
// gc does), or the argument to os.Exit for normal termination.
//
func Interpret(mainpkg *ssa.Package, mode Mode, filename string, args []string) (exitCode int) {
i := &interpreter{
prog: mainpkg.Prog,
globals: make(map[ssa.Value]*value),
mode: mode,
}
initReflect(i)
for importPath, pkg := range i.prog.PackagesByPath {
// Initialize global storage.
for _, m := range pkg.Members {
switch v := m.(type) {
case *ssa.Global:
cell := zero(deref(v.Type()))
i.globals[v] = &cell
}
}
// Ad-hoc initialization for magic system variables.
switch importPath {
case "syscall":
var envs []value
for _, s := range os.Environ() {
envs = append(envs, s)
}
envs = append(envs, "GOSSAINTERP=1")
setGlobal(i, pkg, "envs", envs)
case "runtime":
// TODO(gri): expose go/types.sizeof so we can
// avoid this fragile magic number;
// unsafe.Sizeof(memStats) won't work since gc
// and go/types have different sizeof
// functions.
setGlobal(i, pkg, "sizeof_C_MStats", uintptr(3696))
case "os":
Args := []value{filename}
for _, s := range args {
Args = append(Args, s)
}
setGlobal(i, pkg, "Args", Args)
}
}
// Top-level error handler.
exitCode = 2
defer func() {
if exitCode != 2 || i.mode&DisableRecover != 0 {
return
}
switch p := recover().(type) {
case exitPanic:
exitCode = int(p)
return
case targetPanic:
fmt.Fprintln(os.Stderr, "panic:", toString(p.v))
case runtime.Error:
fmt.Fprintln(os.Stderr, "panic:", p.Error())
case string:
fmt.Fprintln(os.Stderr, "panic:", p)
default:
fmt.Fprintf(os.Stderr, "panic: unexpected type: %T\n", p)
}
// TODO(adonovan): dump panicking interpreter goroutine?
// buf := make([]byte, 0x10000)
// runtime.Stack(buf, false)
// fmt.Fprintln(os.Stderr, string(buf))
// (Or dump panicking target goroutine?)
}()
// Run!
call(i, nil, token.NoPos, mainpkg.Func("init"), nil)
if mainFn := mainpkg.Func("main"); mainFn != nil {
call(i, nil, token.NoPos, mainFn, nil)
exitCode = 0
} else {
fmt.Fprintln(os.Stderr, "No main function.")
exitCode = 1
}
return
}
// deref returns a pointer's element type; otherwise it returns typ.
// TODO(adonovan): Import from ssa?
func deref(typ types.Type) types.Type {
if p, ok := typ.Underlying().(*types.Pointer); ok {
return p.Elem()
}
return typ
}