1
0
mirror of https://github.com/golang/go synced 2024-11-19 05:54:44 -07:00
go/pointer/testdata/arrays.go
Alan Donovan 3b5de067a1 go.tools/pointer: reflection, part 1: maps, and some core features.
Core:
        reflect.TypeOf
        reflect.ValueOf
        reflect.Zero
        reflect.Value.Interface
Maps:
        (reflect.Value).MapIndex
        (reflect.Value).MapKeys
        (reflect.Value).SetMapIndex
        (*reflect.rtype).Elem
        (*reflect.rtype).Key

+ tests:
  pointer/testdata/mapreflect.go.
  oracle/testdata/src/main/reflection.go.

Interface objects (T, V...) have been renamed "tagged objects".

Abstraction: we model reflect.Value similar to
interface{}---as a pointer that points only to tagged
objects---but a reflect.Value may also point to an "indirect
tagged object", one in which the payload V is of type *T not T.
These are required because reflect.Values can hold lvalues,
e.g. when derived via Field() or Elem(), though we won't use
them till we get to structs and pointers.

Solving: each reflection intrinsic defines a new constraint
and resolution rule.  Because of the nature of reflection,
generalizing across types, the resolution rules dynamically
create additional complex constraints during solving, where
previously only simple (copy) constraints were created.
This requires some solver changes:

  The work done before the main solver loop (to attach new
  constraints to the graph) is now done before each iteration,
  in processNewConstraints.

  Its loop over constraints is broken into two passes:
  the first handles base (addr-of) constraints,
  the second handles simple and complex constraints.

  constraint.init() has been inlined.  The only behaviour that
  varies across constraints is ptr()

Sadly this will pessimize presolver optimisations, when we get
there; such is the price of reflection.

Objects: reflection intrinsics create objects (i.e. cause
memory allocations) with no SSA operation.  We will represent
them as the cgnode of the instrinsic (e.g. reflect.New), so we
extend Labels and node.data to represent objects as a product
(not sum) of ssa.Value and cgnode and pull this out into its
own type, struct object.  This simplifies a number of
invariants and saves space.  The ntObject flag is now
represented by obj!=nil; the other flags are moved into
object.

cgnodes are now always recorded in objects/Labels for which it
is appropriate (all but those for globals, constants and the
shared contours for functions).

Also:
- Prepopulate the flattenMemo cache to consider reflect.Value
  a fake pointer, not a struct.
- Improve accessors and documentation on type Label.
- @conctypes assertions renamed @types (since dyn. types needn't be concrete).
- add oracle 'describe' test on an interface (missing, an oversight).

R=crawshaw
CC=golang-dev
https://golang.org/cl/13418048
2013-09-16 09:49:10 -04:00

98 lines
2.4 KiB
Go

// +build ignore
package main
var unknown bool // defeat dead-code elimination
var a, b int
func array1() {
sliceA := make([]*int, 10) // @line a1make
sliceA[0] = &a
var sliceB []*int
sliceB = append(sliceB, &b) // @line a1append
print(sliceA) // @pointsto makeslice@a1make:16
print(sliceA[0]) // @pointsto main.a
print(sliceB) // @pointsto append@a1append:17
print(sliceB[100]) // @pointsto main.b
}
func array2() {
sliceA := make([]*int, 10) // @line a2make
sliceA[0] = &a
sliceB := sliceA[:]
print(sliceA) // @pointsto makeslice@a2make:16
print(sliceA[0]) // @pointsto main.a
print(sliceB) // @pointsto makeslice@a2make:16
print(sliceB[0]) // @pointsto main.a
}
func array3() {
a := []interface{}{"", 1}
b := []interface{}{true, func() {}}
print(a[0]) // @types string | int
print(b[0]) // @types bool | func()
}
// Test of append, copy, slice.
func array4() {
var s2 struct { // @line a4L0
a [3]int
b struct{ c, d int }
}
var sl1 = make([]*int, 10) // @line a4make
var someint int // @line a4L1
sl1[1] = &someint
sl2 := append(sl1, &s2.a[1]) // @line a4append1
print(sl1) // @pointsto makeslice@a4make:16
print(sl2) // @pointsto append@a4append1:15 | makeslice@a4make:16
print(sl1[0]) // @pointsto someint@a4L1:6 | s2.a[*]@a4L0:6
print(sl2[0]) // @pointsto someint@a4L1:6 | s2.a[*]@a4L0:6
// In z=append(x,y) we should observe flow from y[*] to x[*].
var sl3 = make([]*int, 10) // @line a4L2
_ = append(sl3, &s2.a[1])
print(sl3) // @pointsto makeslice@a4L2:16
print(sl3[0]) // @pointsto s2.a[*]@a4L0:6
var sl4 = []*int{&a} // @line a4L3
sl4a := append(sl4) // @line a4L4
print(sl4a) // @pointsto slicelit@a4L3:18 | append@a4L4:16
print(&sl4a[0]) // @pointsto slicelit[*]@a4L3:18 | append[*]@a4L4:16
print(sl4a[0]) // @pointsto main.a
var sl5 = []*int{&b} // @line a4L5
copy(sl5, sl4)
print(sl5) // @pointsto slicelit@a4L5:18
print(&sl5[0]) // @pointsto slicelit[*]@a4L5:18
print(sl5[0]) // @pointsto main.b | main.a
var sl6 = sl5[:0]
print(sl6) // @pointsto slicelit@a4L5:18
print(&sl6[0]) // @pointsto slicelit[*]@a4L5:18
print(sl6[0]) // @pointsto main.b | main.a
}
func array5() {
var arr [2]*int
arr[0] = &a
arr[1] = &b
var n int
print(arr[n]) // @pointsto main.a | main.b
}
func main() {
array1()
array2()
array3()
array4()
array5()
}