1
0
mirror of https://github.com/golang/go synced 2024-11-20 07:54:39 -07:00
go/src/pkg/testing/benchmark.go
Josh Bleecher Snyder a5bb1af432 testing: make benchmarking faster
Allow the number of benchmark iterations to grow faster for fast benchmarks, and don't round up twice.

Using the default benchtime, this CL reduces wall clock time to run benchmarks:

net/http        49s   -> 37s   (-24%)
runtime         8m31s -> 5m55s (-30%)
bytes           2m37s -> 1m29s (-43%)
encoding/json   29s   -> 21s   (-27%)
strings         1m16s -> 53s   (-30%)

LGTM=crawshaw
R=golang-codereviews, crawshaw
CC=golang-codereviews
https://golang.org/cl/101970047
2014-06-12 07:51:32 -07:00

447 lines
12 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testing
import (
"flag"
"fmt"
"os"
"runtime"
"sync"
"sync/atomic"
"time"
)
var matchBenchmarks = flag.String("test.bench", "", "regular expression to select benchmarks to run")
var benchTime = flag.Duration("test.benchtime", 1*time.Second, "approximate run time for each benchmark")
var benchmarkMemory = flag.Bool("test.benchmem", false, "print memory allocations for benchmarks")
// Global lock to ensure only one benchmark runs at a time.
var benchmarkLock sync.Mutex
// Used for every benchmark for measuring memory.
var memStats runtime.MemStats
// An internal type but exported because it is cross-package; part of the implementation
// of the "go test" command.
type InternalBenchmark struct {
Name string
F func(b *B)
}
// B is a type passed to Benchmark functions to manage benchmark
// timing and to specify the number of iterations to run.
type B struct {
common
N int
previousN int // number of iterations in the previous run
previousDuration time.Duration // total duration of the previous run
benchmark InternalBenchmark
bytes int64
timerOn bool
showAllocResult bool
result BenchmarkResult
parallelism int // RunParallel creates parallelism*GOMAXPROCS goroutines
// The initial states of memStats.Mallocs and memStats.TotalAlloc.
startAllocs uint64
startBytes uint64
// The net total of this test after being run.
netAllocs uint64
netBytes uint64
}
// StartTimer starts timing a test. This function is called automatically
// before a benchmark starts, but it can also used to resume timing after
// a call to StopTimer.
func (b *B) StartTimer() {
if !b.timerOn {
runtime.ReadMemStats(&memStats)
b.startAllocs = memStats.Mallocs
b.startBytes = memStats.TotalAlloc
b.start = time.Now()
b.timerOn = true
}
}
// StopTimer stops timing a test. This can be used to pause the timer
// while performing complex initialization that you don't
// want to measure.
func (b *B) StopTimer() {
if b.timerOn {
b.duration += time.Now().Sub(b.start)
runtime.ReadMemStats(&memStats)
b.netAllocs += memStats.Mallocs - b.startAllocs
b.netBytes += memStats.TotalAlloc - b.startBytes
b.timerOn = false
}
}
// ResetTimer zeros the elapsed benchmark time and memory allocation counters.
// It does not affect whether the timer is running.
func (b *B) ResetTimer() {
if b.timerOn {
runtime.ReadMemStats(&memStats)
b.startAllocs = memStats.Mallocs
b.startBytes = memStats.TotalAlloc
b.start = time.Now()
}
b.duration = 0
b.netAllocs = 0
b.netBytes = 0
}
// SetBytes records the number of bytes processed in a single operation.
// If this is called, the benchmark will report ns/op and MB/s.
func (b *B) SetBytes(n int64) { b.bytes = n }
// ReportAllocs enables malloc statistics for this benchmark.
// It is equivalent to setting -test.benchmem, but it only affects the
// benchmark function that calls ReportAllocs.
func (b *B) ReportAllocs() {
b.showAllocResult = true
}
func (b *B) nsPerOp() int64 {
if b.N <= 0 {
return 0
}
return b.duration.Nanoseconds() / int64(b.N)
}
// runN runs a single benchmark for the specified number of iterations.
func (b *B) runN(n int) {
benchmarkLock.Lock()
defer benchmarkLock.Unlock()
// Try to get a comparable environment for each run
// by clearing garbage from previous runs.
runtime.GC()
b.N = n
b.parallelism = 1
b.ResetTimer()
b.StartTimer()
b.benchmark.F(b)
b.StopTimer()
b.previousN = n
b.previousDuration = b.duration
}
func min(x, y int) int {
if x > y {
return y
}
return x
}
func max(x, y int) int {
if x < y {
return y
}
return x
}
// roundDown10 rounds a number down to the nearest power of 10.
func roundDown10(n int) int {
var tens = 0
// tens = floor(log_10(n))
for n >= 10 {
n = n / 10
tens++
}
// result = 10^tens
result := 1
for i := 0; i < tens; i++ {
result *= 10
}
return result
}
// roundUp rounds x up to a number of the form [1eX, 2eX, 5eX].
func roundUp(n int) int {
base := roundDown10(n)
switch {
case n <= base:
return base
case n <= (2 * base):
return 2 * base
case n <= (5 * base):
return 5 * base
default:
return 10 * base
}
}
// run times the benchmark function in a separate goroutine.
func (b *B) run() BenchmarkResult {
go b.launch()
<-b.signal
return b.result
}
// launch launches the benchmark function. It gradually increases the number
// of benchmark iterations until the benchmark runs for a second in order
// to get a reasonable measurement. It prints timing information in this form
// testing.BenchmarkHello 100000 19 ns/op
// launch is run by the fun function as a separate goroutine.
func (b *B) launch() {
// Run the benchmark for a single iteration in case it's expensive.
n := 1
// Signal that we're done whether we return normally
// or by FailNow's runtime.Goexit.
defer func() {
b.signal <- b
}()
b.runN(n)
// Run the benchmark for at least the specified amount of time.
d := *benchTime
for !b.failed && b.duration < d && n < 1e9 {
last := n
// Predict iterations/sec.
if b.nsPerOp() == 0 {
n = 1e9
} else {
n = int(d.Nanoseconds() / b.nsPerOp())
}
// If the last run was small, don't grow too fast.
if last < 1000 {
n = min(n, 100*last)
}
// Be sure to run at least one more than last time.
n = max(n, last+1)
// Round up to something easy to read.
n = roundUp(n)
b.runN(n)
}
b.result = BenchmarkResult{b.N, b.duration, b.bytes, b.netAllocs, b.netBytes}
}
// The results of a benchmark run.
type BenchmarkResult struct {
N int // The number of iterations.
T time.Duration // The total time taken.
Bytes int64 // Bytes processed in one iteration.
MemAllocs uint64 // The total number of memory allocations.
MemBytes uint64 // The total number of bytes allocated.
}
func (r BenchmarkResult) NsPerOp() int64 {
if r.N <= 0 {
return 0
}
return r.T.Nanoseconds() / int64(r.N)
}
func (r BenchmarkResult) mbPerSec() float64 {
if r.Bytes <= 0 || r.T <= 0 || r.N <= 0 {
return 0
}
return (float64(r.Bytes) * float64(r.N) / 1e6) / r.T.Seconds()
}
func (r BenchmarkResult) AllocsPerOp() int64 {
if r.N <= 0 {
return 0
}
return int64(r.MemAllocs) / int64(r.N)
}
func (r BenchmarkResult) AllocedBytesPerOp() int64 {
if r.N <= 0 {
return 0
}
return int64(r.MemBytes) / int64(r.N)
}
func (r BenchmarkResult) String() string {
mbs := r.mbPerSec()
mb := ""
if mbs != 0 {
mb = fmt.Sprintf("\t%7.2f MB/s", mbs)
}
nsop := r.NsPerOp()
ns := fmt.Sprintf("%10d ns/op", nsop)
if r.N > 0 && nsop < 100 {
// The format specifiers here make sure that
// the ones digits line up for all three possible formats.
if nsop < 10 {
ns = fmt.Sprintf("%13.2f ns/op", float64(r.T.Nanoseconds())/float64(r.N))
} else {
ns = fmt.Sprintf("%12.1f ns/op", float64(r.T.Nanoseconds())/float64(r.N))
}
}
return fmt.Sprintf("%8d\t%s%s", r.N, ns, mb)
}
func (r BenchmarkResult) MemString() string {
return fmt.Sprintf("%8d B/op\t%8d allocs/op",
r.AllocedBytesPerOp(), r.AllocsPerOp())
}
// An internal function but exported because it is cross-package; part of the implementation
// of the "go test" command.
func RunBenchmarks(matchString func(pat, str string) (bool, error), benchmarks []InternalBenchmark) {
// If no flag was specified, don't run benchmarks.
if len(*matchBenchmarks) == 0 {
return
}
for _, Benchmark := range benchmarks {
matched, err := matchString(*matchBenchmarks, Benchmark.Name)
if err != nil {
fmt.Fprintf(os.Stderr, "testing: invalid regexp for -test.bench: %s\n", err)
os.Exit(1)
}
if !matched {
continue
}
for _, procs := range cpuList {
runtime.GOMAXPROCS(procs)
b := &B{
common: common{
signal: make(chan interface{}),
},
benchmark: Benchmark,
}
benchName := Benchmark.Name
if procs != 1 {
benchName = fmt.Sprintf("%s-%d", Benchmark.Name, procs)
}
fmt.Printf("%s\t", benchName)
r := b.run()
if b.failed {
// The output could be very long here, but probably isn't.
// We print it all, regardless, because we don't want to trim the reason
// the benchmark failed.
fmt.Printf("--- FAIL: %s\n%s", benchName, b.output)
continue
}
results := r.String()
if *benchmarkMemory || b.showAllocResult {
results += "\t" + r.MemString()
}
fmt.Println(results)
// Unlike with tests, we ignore the -chatty flag and always print output for
// benchmarks since the output generation time will skew the results.
if len(b.output) > 0 {
b.trimOutput()
fmt.Printf("--- BENCH: %s\n%s", benchName, b.output)
}
if p := runtime.GOMAXPROCS(-1); p != procs {
fmt.Fprintf(os.Stderr, "testing: %s left GOMAXPROCS set to %d\n", benchName, p)
}
}
}
}
// trimOutput shortens the output from a benchmark, which can be very long.
func (b *B) trimOutput() {
// The output is likely to appear multiple times because the benchmark
// is run multiple times, but at least it will be seen. This is not a big deal
// because benchmarks rarely print, but just in case, we trim it if it's too long.
const maxNewlines = 10
for nlCount, j := 0, 0; j < len(b.output); j++ {
if b.output[j] == '\n' {
nlCount++
if nlCount >= maxNewlines {
b.output = append(b.output[:j], "\n\t... [output truncated]\n"...)
break
}
}
}
}
// A PB is used by RunParallel for running parallel benchmarks.
type PB struct {
globalN *uint64 // shared between all worker goroutines iteration counter
grain uint64 // acquire that many iterations from globalN at once
cache uint64 // local cache of acquired iterations
bN uint64 // total number of iterations to execute (b.N)
}
// Next reports whether there are more iterations to execute.
func (pb *PB) Next() bool {
if pb.cache == 0 {
n := atomic.AddUint64(pb.globalN, pb.grain)
if n <= pb.bN {
pb.cache = pb.grain
} else if n < pb.bN+pb.grain {
pb.cache = pb.bN + pb.grain - n
} else {
return false
}
}
pb.cache--
return true
}
// RunParallel runs a benchmark in parallel.
// It creates multiple goroutines and distributes b.N iterations among them.
// The number of goroutines defaults to GOMAXPROCS. To increase parallelism for
// non-CPU-bound benchmarks, call SetParallelism before RunParallel.
// RunParallel is usually used with the go test -cpu flag.
//
// The body function will be run in each goroutine. It should set up any
// goroutine-local state and then iterate until pb.Next returns false.
// It should not use the StartTimer, StopTimer, or ResetTimer functions,
// because they have global effect.
func (b *B) RunParallel(body func(*PB)) {
// Calculate grain size as number of iterations that take ~100µs.
// 100µs is enough to amortize the overhead and provide sufficient
// dynamic load balancing.
grain := uint64(0)
if b.previousN > 0 && b.previousDuration > 0 {
grain = 1e5 * uint64(b.previousN) / uint64(b.previousDuration)
}
if grain < 1 {
grain = 1
}
// We expect the inner loop and function call to take at least 10ns,
// so do not do more than 100µs/10ns=1e4 iterations.
if grain > 1e4 {
grain = 1e4
}
n := uint64(0)
numProcs := b.parallelism * runtime.GOMAXPROCS(0)
var wg sync.WaitGroup
wg.Add(numProcs)
for p := 0; p < numProcs; p++ {
go func() {
defer wg.Done()
pb := &PB{
globalN: &n,
grain: grain,
bN: uint64(b.N),
}
body(pb)
}()
}
wg.Wait()
if n <= uint64(b.N) && !b.Failed() {
b.Fatal("RunParallel: body exited without pb.Next() == false")
}
}
// SetParallelism sets the number of goroutines used by RunParallel to p*GOMAXPROCS.
// There is usually no need to call SetParallelism for CPU-bound benchmarks.
// If p is less than 1, this call will have no effect.
func (b *B) SetParallelism(p int) {
if p >= 1 {
b.parallelism = p
}
}
// Benchmark benchmarks a single function. Useful for creating
// custom benchmarks that do not use the "go test" command.
func Benchmark(f func(b *B)) BenchmarkResult {
b := &B{
common: common{
signal: make(chan interface{}),
},
benchmark: InternalBenchmark{"", f},
}
return b.run()
}