mirror of
https://github.com/golang/go
synced 2024-11-17 16:54:44 -07:00
fe8347b61a
Instructions with immediates can be precomputed when operating on a constant - do so for SLTI/SLTIU, SLLI/SRLI/SRAI, NEG/NEGW, ANDI, ORI and ADDI. Additionally, optimise ANDI and ORI when the immediate is all ones or all zeroes. In particular, the RISCV64 logical left and right shift rules (Lsh*x*/Rsh*Ux*) produce sequences that check if the shift amount exceeds 64 and if so returns zero. When the shift amount is a constant we can precompute and eliminate the filter entirely. Likewise the arithmetic right shift rules produce sequences that check if the shift amount exceeds 64 and if so, ensures that the lower six bits of the shift are all ones. When the shift amount is a constant we can precompute the shift value. Arithmetic right shift sequences like: 117fc: 00100513 li a0,1 11800: 04053593 sltiu a1,a0,64 11804: fff58593 addi a1,a1,-1 11808: 0015e593 ori a1,a1,1 1180c: 40b45433 sra s0,s0,a1 Are now a single srai instruction: 117fc: 40145413 srai s0,s0,0x1 Likewise for logical left shift (and logical right shift): 1d560: 01100413 li s0,17 1d564: 04043413 sltiu s0,s0,64 1d568: 40800433 neg s0,s0 1d56c: 01131493 slli s1,t1,0x11 1d570: 0084f433 and s0,s1,s0 Which are now a single slli (or srli) instruction: 1d120: 01131413 slli s0,t1,0x11 This removes more than 30,000 instructions from the Go binary and should improve performance in a variety of areas - of note runtime.makemap_small drops from 48 to 36 instructions. Similar gains exist in at least other parts of runtime and math/bits. Change-Id: I33f6f3d1fd36d9ff1bda706997162bfe4bb859b6 Reviewed-on: https://go-review.googlesource.com/c/go/+/350689 Trust: Joel Sing <joel@sing.id.au> Reviewed-by: Michael Munday <mike.munday@lowrisc.org> Reviewed-by: Cherry Mui <cherryyz@google.com> |
||
---|---|---|
.. | ||
addrcalc.go | ||
alloc.go | ||
arithmetic.go | ||
bitfield.go | ||
bits.go | ||
bmi.go | ||
bool.go | ||
clobberdead.go | ||
clobberdeadreg.go | ||
compare_and_branch.go | ||
comparisons.go | ||
condmove.go | ||
copy.go | ||
floats.go | ||
fuse.go | ||
issue22703.go | ||
issue25378.go | ||
issue31618.go | ||
issue33580.go | ||
issue38554.go | ||
issue42610.go | ||
issue48054.go | ||
logic.go | ||
mapaccess.go | ||
maps.go | ||
math.go | ||
mathbits.go | ||
memcombine.go | ||
memops.go | ||
noextend.go | ||
race.go | ||
README | ||
regabi_regalloc.go | ||
retpoline.go | ||
rotate.go | ||
select.go | ||
shift.go | ||
shortcircuit.go | ||
slices.go | ||
smallintiface.go | ||
spectre.go | ||
stack.go | ||
strings.go | ||
structs.go | ||
switch.go | ||
zerosize.go |
// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. The codegen directory contains code generation tests for the gc compiler. - Introduction The test harness compiles Go code inside files in this directory and matches the generated assembly (the output of `go tool compile -S`) against a set of regexps to be specified in comments that follow a special syntax (described below). The test driver is implemented as a step of the top-level test/run.go suite, called "asmcheck". The codegen harness is part of the all.bash test suite, but for performance reasons only the codegen tests for the host machine's GOARCH are enabled by default, and only on GOOS=linux. To perform comprehensive tests for all the supported architectures (even on a non-Linux system), one can run the following command $ ../bin/go run run.go -all_codegen -v codegen in the top-level test directory. This is recommended after any change that affect the compiler's code. The test harness compiles the tests with the same go toolchain that is used to run run.go. After writing tests for a newly added codegen transformation, it can be useful to first run the test harness with a toolchain from a released Go version (and verify that the new tests fail), and then re-runnig the tests using the devel toolchain. - Regexps comments syntax Instructions to match are specified inside plain comments that start with an architecture tag, followed by a colon and a quoted Go-style regexp to be matched. For example, the following test: func Sqrt(x float64) float64 { // amd64:"SQRTSD" // arm64:"FSQRTD" return math.Sqrt(x) } verifies that math.Sqrt calls are intrinsified to a SQRTSD instruction on amd64, and to a FSQRTD instruction on arm64. It is possible to put multiple architectures checks into the same line, as: // amd64:"SQRTSD" arm64:"FSQRTD" although this form should be avoided when doing so would make the regexps line excessively long and difficult to read. Comments that are on their own line will be matched against the first subsequent non-comment line. Inline comments are also supported; the regexp will be matched against the code found on the same line: func Sqrt(x float64) float64 { return math.Sqrt(x) // arm:"SQRTD" } It's possible to specify a comma-separated list of regexps to be matched. For example, the following test: func TZ8(n uint8) int { // amd64:"BSFQ","ORQ\t\\$256" return bits.TrailingZeros8(n) } verifies that the code generated for a bits.TrailingZeros8 call on amd64 contains both a "BSFQ" instruction and an "ORQ $256". Note how the ORQ regex includes a tab char (\t). In the Go assembly syntax, operands are separated from opcodes by a tabulation. Regexps can be quoted using either " or `. Special characters must be escaped accordingly. Both of these are accepted, and equivalent: // amd64:"ADDQ\t\\$3" // amd64:`ADDQ\t\$3` and they'll match this assembly line: ADDQ $3 Negative matches can be specified using a - before the quoted regexp. For example: func MoveSmall() { x := [...]byte{1, 2, 3, 4, 5, 6, 7} copy(x[1:], x[:]) // arm64:-".*memmove" } verifies that NO memmove call is present in the assembly generated for the copy() line. - Architecture specifiers There are three different ways to specify on which architecture a test should be run: * Specify only the architecture (eg: "amd64"). This indicates that the check should be run on all the supported architecture variants. For instance, arm checks will be run against all supported GOARM variations (5,6,7). * Specify both the architecture and a variant, separated by a slash (eg: "arm/7"). This means that the check will be run only on that specific variant. * Specify the operating system, the architecture and the variant, separated by slashes (eg: "plan9/386/sse2", "plan9/amd64/"). This is needed in the rare case that you need to do a codegen test affected by a specific operating system; by default, tests are compiled only targeting linux. - Remarks, and Caveats -- Write small test functions As a general guideline, test functions should be small, to avoid possible interactions between unrelated lines of code that may be introduced, for example, by the compiler's optimization passes. Any given line of Go code could get assigned more instructions than it may appear from reading the source. In particular, matching all MOV instructions should be avoided; the compiler may add them for unrelated reasons and this may render the test ineffective. -- Line matching logic Regexps are always matched from the start of the instructions line. This means, for example, that the "MULQ" regexp is equivalent to "^MULQ" (^ representing the start of the line), and it will NOT match the following assembly line: IMULQ $99, AX To force a match at any point of the line, ".*MULQ" should be used. For the same reason, a negative regexp like -"memmove" is not enough to make sure that no memmove call is included in the assembly. A memmove call looks like this: CALL runtime.memmove(SB) To make sure that the "memmove" symbol does not appear anywhere in the assembly, the negative regexp to be used is -".*memmove".