mirror of
https://github.com/golang/go
synced 2024-11-14 14:10:29 -07:00
5bb89eb009
All multi-precision arithmetic is now based on math/big. - passes all.bash - added test cases for fixed bugs Fixes #7740. Fixes #6866. Change-Id: I67268b91766970ced3b928260053ccdce8753d58 Reviewed-on: https://go-review.googlesource.com/7912 Reviewed-by: Russ Cox <rsc@golang.org>
81 lines
1.5 KiB
Go
81 lines
1.5 KiB
Go
// run
|
|
|
|
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// WARNING: GENERATED FILE - DO NOT MODIFY MANUALLY!
|
|
// (To generate, in go/types directory: go test -run=Hilbert -H=2 -out="h2.src")
|
|
|
|
// This program tests arbitrary precision constant arithmetic
|
|
// by generating the constant elements of a Hilbert matrix H,
|
|
// its inverse I, and the product P = H*I. The product should
|
|
// be the identity matrix.
|
|
package main
|
|
|
|
func main() {
|
|
if !ok {
|
|
print()
|
|
return
|
|
}
|
|
}
|
|
|
|
// Hilbert matrix, n = 2
|
|
const (
|
|
h0_0, h0_1 = 1.0 / (iota + 1), 1.0 / (iota + 2)
|
|
h1_0, h1_1
|
|
)
|
|
|
|
// Inverse Hilbert matrix
|
|
const (
|
|
i0_0 = +1 * b2_1 * b2_1 * b0_0 * b0_0
|
|
i0_1 = -2 * b2_0 * b3_1 * b1_0 * b1_0
|
|
|
|
i1_0 = -2 * b3_1 * b2_0 * b1_1 * b1_1
|
|
i1_1 = +3 * b3_0 * b3_0 * b2_1 * b2_1
|
|
)
|
|
|
|
// Product matrix
|
|
const (
|
|
p0_0 = h0_0*i0_0 + h0_1*i1_0
|
|
p0_1 = h0_0*i0_1 + h0_1*i1_1
|
|
|
|
p1_0 = h1_0*i0_0 + h1_1*i1_0
|
|
p1_1 = h1_0*i0_1 + h1_1*i1_1
|
|
)
|
|
|
|
// Verify that product is identity matrix
|
|
const ok = p0_0 == 1 && p0_1 == 0 &&
|
|
p1_0 == 0 && p1_1 == 1 &&
|
|
true
|
|
|
|
func print() {
|
|
println(p0_0, p0_1)
|
|
println(p1_0, p1_1)
|
|
}
|
|
|
|
// Binomials
|
|
const (
|
|
b0_0 = f0 / (f0 * f0)
|
|
|
|
b1_0 = f1 / (f0 * f1)
|
|
b1_1 = f1 / (f1 * f0)
|
|
|
|
b2_0 = f2 / (f0 * f2)
|
|
b2_1 = f2 / (f1 * f1)
|
|
b2_2 = f2 / (f2 * f0)
|
|
|
|
b3_0 = f3 / (f0 * f3)
|
|
b3_1 = f3 / (f1 * f2)
|
|
b3_2 = f3 / (f2 * f1)
|
|
b3_3 = f3 / (f3 * f0)
|
|
)
|
|
|
|
// Factorials
|
|
const (
|
|
f0 = 1
|
|
f1 = 1
|
|
f2 = f1 * 2
|
|
f3 = f2 * 3
|
|
)
|