1
0
mirror of https://github.com/golang/go synced 2024-11-19 05:24:42 -07:00
go/ssa/create.go
Alan Donovan 2accef29d7 go.tools/ssa: implement correct control flow for recovered panic.
A function such as this:
        func one() (x int) {
                defer func() { recover() }()
                x = 1
                panic("return")
        }
that combines named return parameters (NRPs) with deferred calls
that call recover, may return non-zero values despite the
fact it doesn't even contain a return statement. (!)

This requires a change to the SSA API: all functions'
control-flow graphs now have a second entry point, called
Recover, which is the block at which control flow resumes
after a recovered panic.  The Recover block simply loads the
NRPs and returns them.

As an optimization, most functions don't need a Recover block,
so it is omitted.  In fact it is only needed for functions that
have NRPs and defer a call to another function that _may_ call
recover.

Dataflow analysis of SSA now requires extra work, since every
may-panic instruction has an implicit control-flow edge to
the Recover block.  The only dataflow analysis so far implemented
is SSA renaming, for which we make the following simplifying
assumption: the Recover block only loads the NRPs and returns.
This means we don't really need to analyze it, we can just
skip the "lifting" of such NRPs.  We also special-case the Recover
block in the dominance computation.

Rejected alternative approaches:
- Specifying a Recover block for every defer instruction (like a
   traditional exception handler).
   This seemed like excessive generality, since Go programs
   only need the same degenerate form of Recover block.
- Adding an instruction to set the Recover block immediately
   after the named return values are set up, so that dominance
   can be computed without special-casing.
   This didn't seem worth the effort.

Interpreter:
- This CL completely reimplements the panic/recover/
  defer logic in the interpreter.  It's clearer and simpler
  and closer to the model in the spec.
- Some runtime panic messages have been changed to be closer
  to gc's, since tests depend on it.
- The interpreter now requires that the runtime.runtimeError
  type be part of the SSA program.  This requires that clients
  import this package prior to invoking the interpreter.
  This in turn requires (Importer).ImportPackage(path string),
  which this CL adds.
- All $GOROOT/test/recover{,1,2,3}.go tests are now passing.

NB, the bug described in coverage.go (defer/recover in a concatenated
init function) remains.  Will be fixed in a follow-up.

Fixes golang/go#6381

R=gri
CC=crawshaw, golang-dev
https://golang.org/cl/13844043
2013-10-14 15:38:56 -04:00

302 lines
7.8 KiB
Go

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
// This file implements the CREATE phase of SSA construction.
// See builder.go for explanation.
import (
"fmt"
"go/ast"
"go/token"
"os"
"strings"
"code.google.com/p/go.tools/go/types"
"code.google.com/p/go.tools/importer"
)
// BuilderMode is a bitmask of options for diagnostics and checking.
type BuilderMode uint
const (
LogPackages BuilderMode = 1 << iota // Dump package inventory to stderr
LogFunctions // Dump function SSA code to stderr
LogSource // Show source locations as SSA builder progresses
SanityCheckFunctions // Perform sanity checking of function bodies
NaiveForm // Build naïve SSA form: don't replace local loads/stores with registers
BuildSerially // Build packages serially, not in parallel.
)
// NewProgram returns a new SSA Program initially containing no
// packages.
//
// fset specifies the mapping from token positions to source location
// that will be used by all ASTs of this program.
//
// mode controls diagnostics and checking during SSA construction.
//
func NewProgram(fset *token.FileSet, mode BuilderMode) *Program {
prog := &Program{
Fset: fset,
imported: make(map[string]*Package),
packages: make(map[*types.Package]*Package),
builtins: make(map[*types.Builtin]*Builtin),
boundMethodWrappers: make(map[*types.Func]*Function),
ifaceMethodWrappers: make(map[*types.Func]*Function),
mode: mode,
}
// Create Values for built-in functions.
for _, name := range types.Universe.Names() {
if obj, ok := types.Universe.Lookup(name).(*types.Builtin); ok {
prog.builtins[obj] = &Builtin{obj}
}
}
return prog
}
// memberFromObject populates package pkg with a member for the
// typechecker object obj.
//
// For objects from Go source code, syntax is the associated syntax
// tree (for funcs and vars only); it will be used during the build
// phase.
//
func memberFromObject(pkg *Package, obj types.Object, syntax ast.Node) {
name := obj.Name()
switch obj := obj.(type) {
case *types.TypeName:
pkg.Members[name] = &Type{object: obj}
case *types.Const:
c := &NamedConst{
object: obj,
Value: NewConst(obj.Val(), obj.Type()),
}
pkg.values[obj] = c.Value
pkg.Members[name] = c
case *types.Var:
spec, _ := syntax.(*ast.ValueSpec)
g := &Global{
Pkg: pkg,
name: name,
object: obj,
typ: types.NewPointer(obj.Type()), // address
pos: obj.Pos(),
spec: spec,
}
pkg.values[obj] = g
pkg.Members[name] = g
case *types.Func:
var fs *funcSyntax
synthetic := "loaded from gc object file"
if decl, ok := syntax.(*ast.FuncDecl); ok {
synthetic = ""
fs = &funcSyntax{
functype: decl.Type,
recvField: decl.Recv,
body: decl.Body,
}
}
fn := &Function{
name: name,
object: obj,
Signature: obj.Type().(*types.Signature),
Synthetic: synthetic,
pos: obj.Pos(), // (iff syntax)
Pkg: pkg,
Prog: pkg.Prog,
syntax: fs,
}
pkg.values[obj] = fn
if fn.Signature.Recv() == nil {
pkg.Members[name] = fn // package-level function
}
default: // (incl. *types.Package)
panic("unexpected Object type: " + obj.String())
}
}
// membersFromDecl populates package pkg with members for each
// typechecker object (var, func, const or type) associated with the
// specified decl.
//
func membersFromDecl(pkg *Package, decl ast.Decl) {
switch decl := decl.(type) {
case *ast.GenDecl: // import, const, type or var
switch decl.Tok {
case token.CONST:
for _, spec := range decl.Specs {
for _, id := range spec.(*ast.ValueSpec).Names {
if !isBlankIdent(id) {
memberFromObject(pkg, pkg.objectOf(id), nil)
}
}
}
case token.VAR:
for _, spec := range decl.Specs {
for _, id := range spec.(*ast.ValueSpec).Names {
if !isBlankIdent(id) {
memberFromObject(pkg, pkg.objectOf(id), spec)
}
}
}
case token.TYPE:
for _, spec := range decl.Specs {
id := spec.(*ast.TypeSpec).Name
if !isBlankIdent(id) {
memberFromObject(pkg, pkg.objectOf(id), nil)
}
}
}
case *ast.FuncDecl:
id := decl.Name
if decl.Recv == nil && id.Name == "init" {
return // no object
}
if !isBlankIdent(id) {
memberFromObject(pkg, pkg.objectOf(id), decl)
}
}
}
// CreatePackage constructs and returns an SSA Package from an
// error-free package described by info, and populates its Members
// mapping.
//
// Repeated calls with the same info return the same Package.
//
// The real work of building SSA form for each function is not done
// until a subsequent call to Package.Build().
//
func (prog *Program) CreatePackage(info *importer.PackageInfo) *Package {
if info.Err != nil {
panic(fmt.Sprintf("package %s has errors: %s", info, info.Err))
}
if p := prog.packages[info.Pkg]; p != nil {
return p // already loaded
}
p := &Package{
Prog: prog,
Members: make(map[string]Member),
values: make(map[types.Object]Value),
Object: info.Pkg,
info: info, // transient (CREATE and BUILD phases)
}
// Add init() function.
p.init = &Function{
name: "init",
Signature: new(types.Signature),
Synthetic: "package initializer",
Pkg: p,
Prog: prog,
}
p.Members[p.init.name] = p.init
// CREATE phase.
// Allocate all package members: vars, funcs, consts and types.
if len(info.Files) > 0 {
// Go source package.
for _, file := range info.Files {
for _, decl := range file.Decls {
membersFromDecl(p, decl)
}
}
} else {
// GC-compiled binary package.
// No code.
// No position information.
scope := p.Object.Scope()
for _, name := range scope.Names() {
obj := scope.Lookup(name)
memberFromObject(p, obj, nil)
if obj, ok := obj.(*types.TypeName); ok {
named := obj.Type().(*types.Named)
for i, n := 0, named.NumMethods(); i < n; i++ {
memberFromObject(p, named.Method(i), nil)
}
}
}
}
// Add initializer guard variable.
initguard := &Global{
Pkg: p,
name: "init$guard",
typ: types.NewPointer(tBool),
}
p.Members[initguard.Name()] = initguard
if prog.mode&LogPackages != 0 {
p.DumpTo(os.Stderr)
}
if info.Importable {
prog.imported[info.Pkg.Path()] = p
}
prog.packages[p.Object] = p
if prog.mode&SanityCheckFunctions != 0 {
sanityCheckPackage(p)
}
return p
}
// CreatePackages creates SSA Packages for all error-free packages
// loaded by the specified Importer.
//
// If all packages were error-free, it is safe to call
// prog.BuildAll(), and nil is returned. Otherwise an error is
// returned.
//
func (prog *Program) CreatePackages(imp *importer.Importer) error {
var errpkgs []string
for _, info := range imp.AllPackages() {
if info.Err != nil {
errpkgs = append(errpkgs, info.Pkg.Path())
} else {
prog.CreatePackage(info)
}
}
if errpkgs != nil {
return fmt.Errorf("couldn't create these SSA packages due to type errors: %s",
strings.Join(errpkgs, ", "))
}
return nil
}
// AllPackages returns a new slice containing all packages in the
// program prog in unspecified order.
//
func (prog *Program) AllPackages() []*Package {
pkgs := make([]*Package, 0, len(prog.packages))
for _, pkg := range prog.packages {
pkgs = append(pkgs, pkg)
}
return pkgs
}
// ImportedPackage returns the importable SSA Package whose import
// path is path, or nil if no such SSA package has been created.
//
// Not all packages are importable. For example, no import
// declaration can resolve to the x_test package created by 'go test'
// or the ad-hoc main package created 'go build foo.go'.
//
func (prog *Program) ImportedPackage(path string) *Package {
return prog.imported[path]
}