1
0
mirror of https://github.com/golang/go synced 2024-10-01 16:28:33 -06:00
go/ssa/source.go
Alan Donovan 2a3a12930b go.tools/ssa: add test of SSA construction on $GOROOT/src/pkg/...
stdlib_test runs the builder (in sanity-checking mode) over
the Go standard library.  It also prints some stats about
the time and memory usage.

Also:
- importer.LoadPackage too (not just doImport) must consult
  the cache to avoid creating duplicate Package instances for
  the same import path when called serially from a test.
- importer: skip empty directories without an error.
- importer: print all errors, not just the first.
- visit.go: added AllFunctions utility for enumerating all
  Functions in a Program.
- ssa.MethodSet is not safe to expose from the package since
  it must be accessed under an (inaccessible) lock.  (!!!)
  This CL makes it unexported and restricts its use to the
  single function Program.LookupMethod().
- Program.MethodSet() has gone.
  Clients should instead iterate over the types.MethodSet
  and call LookupMethod.
- Package.DumpTo(): improved efficiency of methodset printing
  (by not creating wrappers) and accuracy (by showing * on
  receiver type only when necessary).
- Program.CreatePackage: documented precondition and added
  assertion.

R=gri
CC=golang-dev
https://golang.org/cl/12058048
2013-07-30 14:28:14 -04:00

320 lines
8.7 KiB
Go

package ssa
// This file defines utilities for working with source positions
// or source-level named entities ("objects").
import (
"go/ast"
"go/token"
"code.google.com/p/go.tools/go/types"
)
// EnclosingFunction returns the function that contains the syntax
// node denoted by path.
//
// Syntax associated with package-level variable specifications is
// enclosed by the package's init() function.
//
// Returns nil if not found; reasons might include:
// - the node is not enclosed by any function.
// - the node is within an anonymous function (FuncLit) and
// its SSA function has not been created yet (pkg.BuildPackage()
// has not yet been called).
//
func EnclosingFunction(pkg *Package, path []ast.Node) *Function {
// Start with package-level function...
fn := findEnclosingPackageLevelFunction(pkg, path)
if fn == nil {
return nil // not in any function
}
// ...then walk down the nested anonymous functions.
n := len(path)
outer:
for i := range path {
if lit, ok := path[n-1-i].(*ast.FuncLit); ok {
for _, anon := range fn.AnonFuncs {
if anon.Pos() == lit.Type.Func {
fn = anon
continue outer
}
}
// SSA function not found:
// - package not yet built, or maybe
// - builder skipped FuncLit in dead block
// (in principle; but currently the Builder
// generates even dead FuncLits).
return nil
}
}
return fn
}
// HasEnclosingFunction returns true if the AST node denoted by path
// is contained within the declaration of some function or
// package-level variable.
//
// Unlike EnclosingFunction, the behaviour of this function does not
// depend on whether SSA code for pkg has been built, so it can be
// used to quickly reject check inputs that will cause
// EnclosingFunction to fail, prior to SSA building.
//
func HasEnclosingFunction(pkg *Package, path []ast.Node) bool {
return findEnclosingPackageLevelFunction(pkg, path) != nil
}
// findEnclosingPackageLevelFunction returns the Function
// corresponding to the package-level function enclosing path.
//
func findEnclosingPackageLevelFunction(pkg *Package, path []ast.Node) *Function {
if n := len(path); n >= 2 { // [... {Gen,Func}Decl File]
switch decl := path[n-2].(type) {
case *ast.GenDecl:
if decl.Tok == token.VAR && n >= 3 {
// Package-level 'var' initializer.
return pkg.init
}
case *ast.FuncDecl:
if decl.Recv == nil && decl.Name.Name == "init" {
// Explicit init() function.
return pkg.init
}
// Declared function/method.
return findNamedFunc(pkg, decl.Name.NamePos)
}
}
return nil // not in any function
}
// findNamedFunc returns the named function whose FuncDecl.Ident is at
// position pos.
//
func findNamedFunc(pkg *Package, pos token.Pos) *Function {
// Look at all package members and method sets of named types.
// Not very efficient.
for _, mem := range pkg.Members {
switch mem := mem.(type) {
case *Function:
if mem.Pos() == pos {
return mem
}
case *Type:
mset := methodSetOf(types.NewPointer(mem.Type()))
for i, n := 0, mset.Len(); i < n; i++ {
// Don't call LookupMethod: avoid creating wrappers.
obj := mset.At(i).Obj().(*types.Func)
if obj.Pos() == pos {
return pkg.values[obj].(*Function)
}
}
}
}
return nil
}
// CanonicalPos returns the canonical position of the AST node n,
//
// For each Node kind that may generate an SSA Value or Instruction,
// exactly one token within it is designated as "canonical". The
// position of that token is returned by {Value,Instruction}.Pos().
// The specifications of those methods determine the implementation of
// this function.
//
// TODO(adonovan): test coverage.
//
func CanonicalPos(n ast.Node) token.Pos {
// Comments show the Value/Instruction kinds v that may be
// created by n such that CanonicalPos(n) == v.Pos().
switch n := n.(type) {
case *ast.ParenExpr:
return CanonicalPos(n.X)
case *ast.CallExpr:
// f(x): *Call, *Go, *Defer.
// T(x): *ChangeType, *Convert, *MakeInterface, *ChangeInterface.
// make(): *MakeMap, *MakeChan, *MakeSlice.
// new(): *Alloc.
// panic(): *Panic.
return n.Lparen
case *ast.Ident:
return n.NamePos // *Parameter, *Alloc, *Capture
case *ast.TypeAssertExpr:
return n.Lparen // *ChangeInterface or *TypeAssertExpr
case *ast.SelectorExpr:
return n.Sel.NamePos // *MakeClosure, *Field, *FieldAddr
case *ast.FuncLit:
return n.Type.Func // *Function or *MakeClosure
case *ast.CompositeLit:
return n.Lbrace // *Alloc or *Slice
case *ast.BinaryExpr:
return n.OpPos // *Phi or *BinOp
case *ast.UnaryExpr:
return n.OpPos // *Phi or *UnOp
case *ast.IndexExpr:
return n.Lbrack // *Index or *IndexAddr
case *ast.SliceExpr:
return n.Lbrack // *Slice
case *ast.SelectStmt:
return n.Select // *Select
case *ast.RangeStmt:
return n.For // *Range
case *ast.ReturnStmt:
return n.Return // *Ret
case *ast.SendStmt:
return n.Arrow // *Send
case *ast.StarExpr:
return n.Star // *Store
case *ast.KeyValueExpr:
return n.Colon // *MapUpdate
}
return token.NoPos
}
// --- Lookup functions for source-level named entities (types.Objects) ---
// Package returns the SSA Package corresponding to the specified
// type-checker package object.
// It returns nil if no such SSA package has been created.
//
func (prog *Program) Package(obj *types.Package) *Package {
return prog.packages[obj]
}
// packageLevelValue returns the package-level value corresponding to
// the specified named object, which may be a package-level const
// (*Const), var (*Global) or func (*Function) of some package in
// prog. It returns nil if the object is not found.
//
func (prog *Program) packageLevelValue(obj types.Object) Value {
if pkg, ok := prog.packages[obj.Pkg()]; ok {
return pkg.values[obj]
}
return nil
}
// FuncValue returns the SSA Value denoted by the source-level named
// function obj. The result may be a *Function or a *Builtin, or nil
// if not found.
//
func (prog *Program) FuncValue(obj *types.Func) Value {
// Universal built-in?
if v, ok := prog.builtins[obj]; ok {
return v
}
// Package-level function or declared method?
if v := prog.packageLevelValue(obj); v != nil {
return v
}
// Interface method wrapper?
sel := types.NewSelection(types.MethodExpr, recvType(obj), obj, nil, false)
return prog.LookupMethod(sel)
}
// ConstValue returns the SSA Value denoted by the source-level named
// constant obj. The result may be a *Const, or nil if not found.
//
func (prog *Program) ConstValue(obj *types.Const) *Const {
// TODO(adonovan): opt: share (don't reallocate)
// Consts for const objects.
// Universal constant? {true,false,nil}
if obj.Parent() == types.Universe {
return NewConst(obj.Val(), obj.Type())
}
// Package-level named constant?
if v := prog.packageLevelValue(obj); v != nil {
return v.(*Const)
}
return NewConst(obj.Val(), obj.Type())
}
// VarValue returns the SSA Value that corresponds to a specific
// identifier denoting the source-level named variable obj.
//
// VarValue returns nil if a local variable was not found, perhaps
// because its package was not built, the DebugInfo flag was not set
// during SSA construction, or the value was optimized away.
//
// TODO(adonovan): test on x.f where x is a field.
//
// ref must be the path to an ast.Ident (e.g. from
// PathEnclosingInterval), and that ident must resolve to obj.
//
// The Value of a defining (as opposed to referring) identifier is the
// value assigned to it in its definition.
//
// In many cases where the identifier appears in an lvalue context,
// the resulting Value is the var's address, not its value.
// For example, x in all these examples:
// x.y = 0
// x[0] = 0
// _ = x[:]
// x = X{}
// _ = &x
// x.method() (iff method is on &x)
// and all package-level vars. (This situation can be detected by
// comparing the types of the Var and Value.)
//
func (prog *Program) VarValue(obj *types.Var, ref []ast.Node) Value {
id := ref[0].(*ast.Ident)
// Package-level variable?
if v := prog.packageLevelValue(obj); v != nil {
return v.(*Global)
}
// It's a local variable (or param) of some function.
// The reference may occur inside a lexically nested function,
// so find that first.
pkg := prog.packages[obj.Pkg()]
if pkg == nil {
panic("no package for " + obj.String())
}
fn := EnclosingFunction(pkg, ref)
if fn == nil {
return nil // e.g. SSA not built
}
// Defining ident of a parameter?
if id.Pos() == obj.Pos() {
for _, param := range fn.Params {
if param.Object() == obj {
return param
}
}
}
// Other ident?
for _, b := range fn.Blocks {
for _, instr := range b.Instrs {
if ref, ok := instr.(*DebugRef); ok {
if ref.Pos() == id.Pos() {
return ref.X
}
}
}
}
return nil // e.g. DebugInfo unset, or var optimized away
}