mirror of
https://github.com/golang/go
synced 2024-11-18 10:04:43 -07:00
2477c0d578
This change will ensure that the tree continues to work with go1.4.1. All files continue to depend on golang.org/x/tools/go/types, but in a follow-up change, I will switch the primary files to depend on the standard go/types package. Another (smaller) set of files will be forked and tagged, this time !1.6, due to API differences between the two packages. All tests pass using 1.4.1, 1.5, and ~1.6 (tip). Change-Id: Ifd75a6330e120957d646be91693daaba1ce0e8c9 Reviewed-on: https://go-review.googlesource.com/18333 Reviewed-by: Robert Griesemer <gri@golang.org>
861 lines
26 KiB
Go
861 lines
26 KiB
Go
// Copyright 2014 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// +build go1.5
|
|
|
|
package rename
|
|
|
|
// This file defines the safety checks for each kind of renaming.
|
|
|
|
import (
|
|
"fmt"
|
|
"go/ast"
|
|
"go/token"
|
|
|
|
"golang.org/x/tools/go/loader"
|
|
"golang.org/x/tools/go/types"
|
|
"golang.org/x/tools/refactor/satisfy"
|
|
)
|
|
|
|
// errorf reports an error (e.g. conflict) and prevents file modification.
|
|
func (r *renamer) errorf(pos token.Pos, format string, args ...interface{}) {
|
|
r.hadConflicts = true
|
|
reportError(r.iprog.Fset.Position(pos), fmt.Sprintf(format, args...))
|
|
}
|
|
|
|
// check performs safety checks of the renaming of the 'from' object to r.to.
|
|
func (r *renamer) check(from types.Object) {
|
|
if r.objsToUpdate[from] {
|
|
return
|
|
}
|
|
r.objsToUpdate[from] = true
|
|
|
|
// NB: order of conditions is important.
|
|
if from_, ok := from.(*types.PkgName); ok {
|
|
r.checkInFileBlock(from_)
|
|
} else if from_, ok := from.(*types.Label); ok {
|
|
r.checkLabel(from_)
|
|
} else if isPackageLevel(from) {
|
|
r.checkInPackageBlock(from)
|
|
} else if v, ok := from.(*types.Var); ok && v.IsField() {
|
|
r.checkStructField(v)
|
|
} else if f, ok := from.(*types.Func); ok && recv(f) != nil {
|
|
r.checkMethod(f)
|
|
} else if isLocal(from) {
|
|
r.checkInLocalScope(from)
|
|
} else {
|
|
r.errorf(from.Pos(), "unexpected %s object %q (please report a bug)\n",
|
|
objectKind(from), from)
|
|
}
|
|
}
|
|
|
|
// checkInFileBlock performs safety checks for renames of objects in the file block,
|
|
// i.e. imported package names.
|
|
func (r *renamer) checkInFileBlock(from *types.PkgName) {
|
|
// Check import name is not "init".
|
|
if r.to == "init" {
|
|
r.errorf(from.Pos(), "%q is not a valid imported package name", r.to)
|
|
}
|
|
|
|
// Check for conflicts between file and package block.
|
|
if prev := from.Pkg().Scope().Lookup(r.to); prev != nil {
|
|
r.errorf(from.Pos(), "renaming this %s %q to %q would conflict",
|
|
objectKind(from), from.Name(), r.to)
|
|
r.errorf(prev.Pos(), "\twith this package member %s",
|
|
objectKind(prev))
|
|
return // since checkInPackageBlock would report redundant errors
|
|
}
|
|
|
|
// Check for conflicts in lexical scope.
|
|
r.checkInLexicalScope(from, r.packages[from.Pkg()])
|
|
|
|
// Finally, modify ImportSpec syntax to add or remove the Name as needed.
|
|
info, path, _ := r.iprog.PathEnclosingInterval(from.Pos(), from.Pos())
|
|
if from.Imported().Name() == r.to {
|
|
// ImportSpec.Name not needed
|
|
path[1].(*ast.ImportSpec).Name = nil
|
|
} else {
|
|
// ImportSpec.Name needed
|
|
if spec := path[1].(*ast.ImportSpec); spec.Name == nil {
|
|
spec.Name = &ast.Ident{NamePos: spec.Path.Pos(), Name: r.to}
|
|
info.Defs[spec.Name] = from
|
|
}
|
|
}
|
|
}
|
|
|
|
// checkInPackageBlock performs safety checks for renames of
|
|
// func/var/const/type objects in the package block.
|
|
func (r *renamer) checkInPackageBlock(from types.Object) {
|
|
// Check that there are no references to the name from another
|
|
// package if the renaming would make it unexported.
|
|
if ast.IsExported(from.Name()) && !ast.IsExported(r.to) {
|
|
for pkg, info := range r.packages {
|
|
if pkg == from.Pkg() {
|
|
continue
|
|
}
|
|
if id := someUse(info, from); id != nil &&
|
|
!r.checkExport(id, pkg, from) {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
info := r.packages[from.Pkg()]
|
|
|
|
// Check that in the package block, "init" is a function, and never referenced.
|
|
if r.to == "init" {
|
|
kind := objectKind(from)
|
|
if kind == "func" {
|
|
// Reject if intra-package references to it exist.
|
|
for id, obj := range info.Uses {
|
|
if obj == from {
|
|
r.errorf(from.Pos(),
|
|
"renaming this func %q to %q would make it a package initializer",
|
|
from.Name(), r.to)
|
|
r.errorf(id.Pos(), "\tbut references to it exist")
|
|
break
|
|
}
|
|
}
|
|
} else {
|
|
r.errorf(from.Pos(), "you cannot have a %s at package level named %q",
|
|
kind, r.to)
|
|
}
|
|
}
|
|
|
|
// Check for conflicts between package block and all file blocks.
|
|
for _, f := range info.Files {
|
|
fileScope := info.Info.Scopes[f]
|
|
b, prev := fileScope.LookupParent(r.to, token.NoPos)
|
|
if b == fileScope {
|
|
r.errorf(from.Pos(), "renaming this %s %q to %q would conflict",
|
|
objectKind(from), from.Name(), r.to)
|
|
r.errorf(prev.Pos(), "\twith this %s",
|
|
objectKind(prev))
|
|
return // since checkInPackageBlock would report redundant errors
|
|
}
|
|
}
|
|
|
|
// Check for conflicts in lexical scope.
|
|
if from.Exported() {
|
|
for _, info := range r.packages {
|
|
r.checkInLexicalScope(from, info)
|
|
}
|
|
} else {
|
|
r.checkInLexicalScope(from, info)
|
|
}
|
|
}
|
|
|
|
func (r *renamer) checkInLocalScope(from types.Object) {
|
|
info := r.packages[from.Pkg()]
|
|
|
|
// Is this object an implicit local var for a type switch?
|
|
// Each case has its own var, whose position is the decl of y,
|
|
// but Ident in that decl does not appear in the Uses map.
|
|
//
|
|
// switch y := x.(type) { // Defs[Ident(y)] is undefined
|
|
// case int: print(y) // Implicits[CaseClause(int)] = Var(y_int)
|
|
// case string: print(y) // Implicits[CaseClause(string)] = Var(y_string)
|
|
// }
|
|
//
|
|
var isCaseVar bool
|
|
for syntax, obj := range info.Implicits {
|
|
if _, ok := syntax.(*ast.CaseClause); ok && obj.Pos() == from.Pos() {
|
|
isCaseVar = true
|
|
r.check(obj)
|
|
}
|
|
}
|
|
|
|
r.checkInLexicalScope(from, info)
|
|
|
|
// Finally, if this was a type switch, change the variable y.
|
|
if isCaseVar {
|
|
_, path, _ := r.iprog.PathEnclosingInterval(from.Pos(), from.Pos())
|
|
path[0].(*ast.Ident).Name = r.to // path is [Ident AssignStmt TypeSwitchStmt...]
|
|
}
|
|
}
|
|
|
|
// checkInLexicalScope performs safety checks that a renaming does not
|
|
// change the lexical reference structure of the specified package.
|
|
//
|
|
// For objects in lexical scope, there are three kinds of conflicts:
|
|
// same-, sub-, and super-block conflicts. We will illustrate all three
|
|
// using this example:
|
|
//
|
|
// var x int
|
|
// var z int
|
|
//
|
|
// func f(y int) {
|
|
// print(x)
|
|
// print(y)
|
|
// }
|
|
//
|
|
// Renaming x to z encounters a SAME-BLOCK CONFLICT, because an object
|
|
// with the new name already exists, defined in the same lexical block
|
|
// as the old object.
|
|
//
|
|
// Renaming x to y encounters a SUB-BLOCK CONFLICT, because there exists
|
|
// a reference to x from within (what would become) a hole in its scope.
|
|
// The definition of y in an (inner) sub-block would cast a shadow in
|
|
// the scope of the renamed variable.
|
|
//
|
|
// Renaming y to x encounters a SUPER-BLOCK CONFLICT. This is the
|
|
// converse situation: there is an existing definition of the new name
|
|
// (x) in an (enclosing) super-block, and the renaming would create a
|
|
// hole in its scope, within which there exist references to it. The
|
|
// new name casts a shadow in scope of the existing definition of x in
|
|
// the super-block.
|
|
//
|
|
// Removing the old name (and all references to it) is always safe, and
|
|
// requires no checks.
|
|
//
|
|
func (r *renamer) checkInLexicalScope(from types.Object, info *loader.PackageInfo) {
|
|
b := from.Parent() // the block defining the 'from' object
|
|
if b != nil {
|
|
toBlock, to := b.LookupParent(r.to, from.Parent().End())
|
|
if toBlock == b {
|
|
// same-block conflict
|
|
r.errorf(from.Pos(), "renaming this %s %q to %q",
|
|
objectKind(from), from.Name(), r.to)
|
|
r.errorf(to.Pos(), "\tconflicts with %s in same block",
|
|
objectKind(to))
|
|
return
|
|
} else if toBlock != nil {
|
|
// Check for super-block conflict.
|
|
// The name r.to is defined in a superblock.
|
|
// Is that name referenced from within this block?
|
|
forEachLexicalRef(info, to, func(id *ast.Ident, block *types.Scope) bool {
|
|
_, obj := lexicalLookup(block, from.Name(), id.Pos())
|
|
if obj == from {
|
|
// super-block conflict
|
|
r.errorf(from.Pos(), "renaming this %s %q to %q",
|
|
objectKind(from), from.Name(), r.to)
|
|
r.errorf(id.Pos(), "\twould shadow this reference")
|
|
r.errorf(to.Pos(), "\tto the %s declared here",
|
|
objectKind(to))
|
|
return false // stop
|
|
}
|
|
return true
|
|
})
|
|
}
|
|
}
|
|
|
|
// Check for sub-block conflict.
|
|
// Is there an intervening definition of r.to between
|
|
// the block defining 'from' and some reference to it?
|
|
forEachLexicalRef(info, from, func(id *ast.Ident, block *types.Scope) bool {
|
|
// Find the block that defines the found reference.
|
|
// It may be an ancestor.
|
|
fromBlock, _ := lexicalLookup(block, from.Name(), id.Pos())
|
|
|
|
// See what r.to would resolve to in the same scope.
|
|
toBlock, to := lexicalLookup(block, r.to, id.Pos())
|
|
if to != nil {
|
|
// sub-block conflict
|
|
if deeper(toBlock, fromBlock) {
|
|
r.errorf(from.Pos(), "renaming this %s %q to %q",
|
|
objectKind(from), from.Name(), r.to)
|
|
r.errorf(id.Pos(), "\twould cause this reference to become shadowed")
|
|
r.errorf(to.Pos(), "\tby this intervening %s definition",
|
|
objectKind(to))
|
|
return false // stop
|
|
}
|
|
}
|
|
return true
|
|
})
|
|
|
|
// Renaming a type that is used as an embedded field
|
|
// requires renaming the field too. e.g.
|
|
// type T int // if we rename this to U..
|
|
// var s struct {T}
|
|
// print(s.T) // ...this must change too
|
|
if _, ok := from.(*types.TypeName); ok {
|
|
for id, obj := range info.Uses {
|
|
if obj == from {
|
|
if field := info.Defs[id]; field != nil {
|
|
r.check(field)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// lexicalLookup is like (*types.Scope).LookupParent but respects the
|
|
// environment visible at pos. It assumes the relative position
|
|
// information is correct with each file.
|
|
func lexicalLookup(block *types.Scope, name string, pos token.Pos) (*types.Scope, types.Object) {
|
|
for b := block; b != nil; b = b.Parent() {
|
|
obj := b.Lookup(name)
|
|
// The scope of a package-level object is the entire package,
|
|
// so ignore pos in that case.
|
|
// No analogous clause is needed for file-level objects
|
|
// since no reference can appear before an import decl.
|
|
if obj != nil && (b == obj.Pkg().Scope() || obj.Pos() < pos) {
|
|
return b, obj
|
|
}
|
|
}
|
|
return nil, nil
|
|
}
|
|
|
|
// deeper reports whether block x is lexically deeper than y.
|
|
func deeper(x, y *types.Scope) bool {
|
|
if x == y || x == nil {
|
|
return false
|
|
} else if y == nil {
|
|
return true
|
|
} else {
|
|
return deeper(x.Parent(), y.Parent())
|
|
}
|
|
}
|
|
|
|
// forEachLexicalRef calls fn(id, block) for each identifier id in package
|
|
// info that is a reference to obj in lexical scope. block is the
|
|
// lexical block enclosing the reference. If fn returns false the
|
|
// iteration is terminated and findLexicalRefs returns false.
|
|
func forEachLexicalRef(info *loader.PackageInfo, obj types.Object, fn func(id *ast.Ident, block *types.Scope) bool) bool {
|
|
ok := true
|
|
var stack []ast.Node
|
|
|
|
var visit func(n ast.Node) bool
|
|
visit = func(n ast.Node) bool {
|
|
if n == nil {
|
|
stack = stack[:len(stack)-1] // pop
|
|
return false
|
|
}
|
|
if !ok {
|
|
return false // bail out
|
|
}
|
|
|
|
stack = append(stack, n) // push
|
|
switch n := n.(type) {
|
|
case *ast.Ident:
|
|
if info.Uses[n] == obj {
|
|
block := enclosingBlock(&info.Info, stack)
|
|
if !fn(n, block) {
|
|
ok = false
|
|
}
|
|
}
|
|
return visit(nil) // pop stack
|
|
|
|
case *ast.SelectorExpr:
|
|
// don't visit n.Sel
|
|
ast.Inspect(n.X, visit)
|
|
return visit(nil) // pop stack, don't descend
|
|
|
|
case *ast.CompositeLit:
|
|
// Handle recursion ourselves for struct literals
|
|
// so we don't visit field identifiers.
|
|
tv := info.Types[n]
|
|
if _, ok := deref(tv.Type).Underlying().(*types.Struct); ok {
|
|
if n.Type != nil {
|
|
ast.Inspect(n.Type, visit)
|
|
}
|
|
for _, elt := range n.Elts {
|
|
if kv, ok := elt.(*ast.KeyValueExpr); ok {
|
|
ast.Inspect(kv.Value, visit)
|
|
} else {
|
|
ast.Inspect(elt, visit)
|
|
}
|
|
}
|
|
return visit(nil) // pop stack, don't descend
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
for _, f := range info.Files {
|
|
ast.Inspect(f, visit)
|
|
if len(stack) != 0 {
|
|
panic(stack)
|
|
}
|
|
if !ok {
|
|
break
|
|
}
|
|
}
|
|
return ok
|
|
}
|
|
|
|
// enclosingBlock returns the innermost block enclosing the specified
|
|
// AST node, specified in the form of a path from the root of the file,
|
|
// [file...n].
|
|
func enclosingBlock(info *types.Info, stack []ast.Node) *types.Scope {
|
|
for i := range stack {
|
|
n := stack[len(stack)-1-i]
|
|
// For some reason, go/types always associates a
|
|
// function's scope with its FuncType.
|
|
// TODO(adonovan): feature or a bug?
|
|
switch f := n.(type) {
|
|
case *ast.FuncDecl:
|
|
n = f.Type
|
|
case *ast.FuncLit:
|
|
n = f.Type
|
|
}
|
|
if b := info.Scopes[n]; b != nil {
|
|
return b
|
|
}
|
|
}
|
|
panic("no Scope for *ast.File")
|
|
}
|
|
|
|
func (r *renamer) checkLabel(label *types.Label) {
|
|
// Check there are no identical labels in the function's label block.
|
|
// (Label blocks don't nest, so this is easy.)
|
|
if prev := label.Parent().Lookup(r.to); prev != nil {
|
|
r.errorf(label.Pos(), "renaming this label %q to %q", label.Name(), prev.Name())
|
|
r.errorf(prev.Pos(), "\twould conflict with this one")
|
|
}
|
|
}
|
|
|
|
// checkStructField checks that the field renaming will not cause
|
|
// conflicts at its declaration, or ambiguity or changes to any selection.
|
|
func (r *renamer) checkStructField(from *types.Var) {
|
|
// Check that the struct declaration is free of field conflicts,
|
|
// and field/method conflicts.
|
|
|
|
// go/types offers no easy way to get from a field (or interface
|
|
// method) to its declaring struct (or interface), so we must
|
|
// ascend the AST.
|
|
info, path, _ := r.iprog.PathEnclosingInterval(from.Pos(), from.Pos())
|
|
// path matches this pattern:
|
|
// [Ident SelectorExpr? StarExpr? Field FieldList StructType ParenExpr* ... File]
|
|
|
|
// Ascend to FieldList.
|
|
var i int
|
|
for {
|
|
if _, ok := path[i].(*ast.FieldList); ok {
|
|
break
|
|
}
|
|
i++
|
|
}
|
|
i++
|
|
tStruct := path[i].(*ast.StructType)
|
|
i++
|
|
// Ascend past parens (unlikely).
|
|
for {
|
|
_, ok := path[i].(*ast.ParenExpr)
|
|
if !ok {
|
|
break
|
|
}
|
|
i++
|
|
}
|
|
if spec, ok := path[i].(*ast.TypeSpec); ok {
|
|
// This struct is also a named type.
|
|
// We must check for direct (non-promoted) field/field
|
|
// and method/field conflicts.
|
|
named := info.Defs[spec.Name].Type()
|
|
prev, indices, _ := types.LookupFieldOrMethod(named, true, info.Pkg, r.to)
|
|
if len(indices) == 1 {
|
|
r.errorf(from.Pos(), "renaming this field %q to %q",
|
|
from.Name(), r.to)
|
|
r.errorf(prev.Pos(), "\twould conflict with this %s",
|
|
objectKind(prev))
|
|
return // skip checkSelections to avoid redundant errors
|
|
}
|
|
} else {
|
|
// This struct is not a named type.
|
|
// We need only check for direct (non-promoted) field/field conflicts.
|
|
T := info.Types[tStruct].Type.Underlying().(*types.Struct)
|
|
for i := 0; i < T.NumFields(); i++ {
|
|
if prev := T.Field(i); prev.Name() == r.to {
|
|
r.errorf(from.Pos(), "renaming this field %q to %q",
|
|
from.Name(), r.to)
|
|
r.errorf(prev.Pos(), "\twould conflict with this field")
|
|
return // skip checkSelections to avoid redundant errors
|
|
}
|
|
}
|
|
}
|
|
|
|
// Renaming an anonymous field requires renaming the type too. e.g.
|
|
// print(s.T) // if we rename T to U,
|
|
// type T int // this and
|
|
// var s struct {T} // this must change too.
|
|
if from.Anonymous() {
|
|
if named, ok := from.Type().(*types.Named); ok {
|
|
r.check(named.Obj())
|
|
} else if named, ok := deref(from.Type()).(*types.Named); ok {
|
|
r.check(named.Obj())
|
|
}
|
|
}
|
|
|
|
// Check integrity of existing (field and method) selections.
|
|
r.checkSelections(from)
|
|
}
|
|
|
|
// checkSelection checks that all uses and selections that resolve to
|
|
// the specified object would continue to do so after the renaming.
|
|
func (r *renamer) checkSelections(from types.Object) {
|
|
for pkg, info := range r.packages {
|
|
if id := someUse(info, from); id != nil {
|
|
if !r.checkExport(id, pkg, from) {
|
|
return
|
|
}
|
|
}
|
|
|
|
for syntax, sel := range info.Selections {
|
|
// There may be extant selections of only the old
|
|
// name or only the new name, so we must check both.
|
|
// (If neither, the renaming is sound.)
|
|
//
|
|
// In both cases, we wish to compare the lengths
|
|
// of the implicit field path (Selection.Index)
|
|
// to see if the renaming would change it.
|
|
//
|
|
// If a selection that resolves to 'from', when renamed,
|
|
// would yield a path of the same or shorter length,
|
|
// this indicates ambiguity or a changed referent,
|
|
// analogous to same- or sub-block lexical conflict.
|
|
//
|
|
// If a selection using the name 'to' would
|
|
// yield a path of the same or shorter length,
|
|
// this indicates ambiguity or shadowing,
|
|
// analogous to same- or super-block lexical conflict.
|
|
|
|
// TODO(adonovan): fix: derive from Types[syntax.X].Mode
|
|
// TODO(adonovan): test with pointer, value, addressable value.
|
|
isAddressable := true
|
|
|
|
if sel.Obj() == from {
|
|
if obj, indices, _ := types.LookupFieldOrMethod(sel.Recv(), isAddressable, from.Pkg(), r.to); obj != nil {
|
|
// Renaming this existing selection of
|
|
// 'from' may block access to an existing
|
|
// type member named 'to'.
|
|
delta := len(indices) - len(sel.Index())
|
|
if delta > 0 {
|
|
continue // no ambiguity
|
|
}
|
|
r.selectionConflict(from, delta, syntax, obj)
|
|
return
|
|
}
|
|
|
|
} else if sel.Obj().Name() == r.to {
|
|
if obj, indices, _ := types.LookupFieldOrMethod(sel.Recv(), isAddressable, from.Pkg(), from.Name()); obj == from {
|
|
// Renaming 'from' may cause this existing
|
|
// selection of the name 'to' to change
|
|
// its meaning.
|
|
delta := len(indices) - len(sel.Index())
|
|
if delta > 0 {
|
|
continue // no ambiguity
|
|
}
|
|
r.selectionConflict(from, -delta, syntax, sel.Obj())
|
|
return
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func (r *renamer) selectionConflict(from types.Object, delta int, syntax *ast.SelectorExpr, obj types.Object) {
|
|
r.errorf(from.Pos(), "renaming this %s %q to %q",
|
|
objectKind(from), from.Name(), r.to)
|
|
|
|
switch {
|
|
case delta < 0:
|
|
// analogous to sub-block conflict
|
|
r.errorf(syntax.Sel.Pos(),
|
|
"\twould change the referent of this selection")
|
|
r.errorf(obj.Pos(), "\tof this %s", objectKind(obj))
|
|
case delta == 0:
|
|
// analogous to same-block conflict
|
|
r.errorf(syntax.Sel.Pos(),
|
|
"\twould make this reference ambiguous")
|
|
r.errorf(obj.Pos(), "\twith this %s", objectKind(obj))
|
|
case delta > 0:
|
|
// analogous to super-block conflict
|
|
r.errorf(syntax.Sel.Pos(),
|
|
"\twould shadow this selection")
|
|
r.errorf(obj.Pos(), "\tof the %s declared here",
|
|
objectKind(obj))
|
|
}
|
|
}
|
|
|
|
// checkMethod performs safety checks for renaming a method.
|
|
// There are three hazards:
|
|
// - declaration conflicts
|
|
// - selection ambiguity/changes
|
|
// - entailed renamings of assignable concrete/interface types.
|
|
// We reject renamings initiated at concrete methods if it would
|
|
// change the assignability relation. For renamings of abstract
|
|
// methods, we rename all methods transitively coupled to it via
|
|
// assignability.
|
|
func (r *renamer) checkMethod(from *types.Func) {
|
|
// e.g. error.Error
|
|
if from.Pkg() == nil {
|
|
r.errorf(from.Pos(), "you cannot rename built-in method %s", from)
|
|
return
|
|
}
|
|
|
|
// ASSIGNABILITY: We reject renamings of concrete methods that
|
|
// would break a 'satisfy' constraint; but renamings of abstract
|
|
// methods are allowed to proceed, and we rename affected
|
|
// concrete and abstract methods as necessary. It is the
|
|
// initial method that determines the policy.
|
|
|
|
// Check for conflict at point of declaration.
|
|
// Check to ensure preservation of assignability requirements.
|
|
R := recv(from).Type()
|
|
if isInterface(R) {
|
|
// Abstract method
|
|
|
|
// declaration
|
|
prev, _, _ := types.LookupFieldOrMethod(R, false, from.Pkg(), r.to)
|
|
if prev != nil {
|
|
r.errorf(from.Pos(), "renaming this interface method %q to %q",
|
|
from.Name(), r.to)
|
|
r.errorf(prev.Pos(), "\twould conflict with this method")
|
|
return
|
|
}
|
|
|
|
// Check all interfaces that embed this one for
|
|
// declaration conflicts too.
|
|
for _, info := range r.packages {
|
|
// Start with named interface types (better errors)
|
|
for _, obj := range info.Defs {
|
|
if obj, ok := obj.(*types.TypeName); ok && isInterface(obj.Type()) {
|
|
f, _, _ := types.LookupFieldOrMethod(
|
|
obj.Type(), false, from.Pkg(), from.Name())
|
|
if f == nil {
|
|
continue
|
|
}
|
|
t, _, _ := types.LookupFieldOrMethod(
|
|
obj.Type(), false, from.Pkg(), r.to)
|
|
if t == nil {
|
|
continue
|
|
}
|
|
r.errorf(from.Pos(), "renaming this interface method %q to %q",
|
|
from.Name(), r.to)
|
|
r.errorf(t.Pos(), "\twould conflict with this method")
|
|
r.errorf(obj.Pos(), "\tin named interface type %q", obj.Name())
|
|
}
|
|
}
|
|
|
|
// Now look at all literal interface types (includes named ones again).
|
|
for e, tv := range info.Types {
|
|
if e, ok := e.(*ast.InterfaceType); ok {
|
|
_ = e
|
|
_ = tv.Type.(*types.Interface)
|
|
// TODO(adonovan): implement same check as above.
|
|
}
|
|
}
|
|
}
|
|
|
|
// assignability
|
|
//
|
|
// Find the set of concrete or abstract methods directly
|
|
// coupled to abstract method 'from' by some
|
|
// satisfy.Constraint, and rename them too.
|
|
for key := range r.satisfy() {
|
|
// key = (lhs, rhs) where lhs is always an interface.
|
|
|
|
lsel := r.msets.MethodSet(key.LHS).Lookup(from.Pkg(), from.Name())
|
|
if lsel == nil {
|
|
continue
|
|
}
|
|
rmethods := r.msets.MethodSet(key.RHS)
|
|
rsel := rmethods.Lookup(from.Pkg(), from.Name())
|
|
if rsel == nil {
|
|
continue
|
|
}
|
|
|
|
// If both sides have a method of this name,
|
|
// and one of them is m, the other must be coupled.
|
|
var coupled *types.Func
|
|
switch from {
|
|
case lsel.Obj():
|
|
coupled = rsel.Obj().(*types.Func)
|
|
case rsel.Obj():
|
|
coupled = lsel.Obj().(*types.Func)
|
|
default:
|
|
continue
|
|
}
|
|
|
|
// We must treat concrete-to-interface
|
|
// constraints like an implicit selection C.f of
|
|
// each interface method I.f, and check that the
|
|
// renaming leaves the selection unchanged and
|
|
// unambiguous.
|
|
//
|
|
// Fun fact: the implicit selection of C.f
|
|
// type I interface{f()}
|
|
// type C struct{I}
|
|
// func (C) g()
|
|
// var _ I = C{} // here
|
|
// yields abstract method I.f. This can make error
|
|
// messages less than obvious.
|
|
//
|
|
if !isInterface(key.RHS) {
|
|
// The logic below was derived from checkSelections.
|
|
|
|
rtosel := rmethods.Lookup(from.Pkg(), r.to)
|
|
if rtosel != nil {
|
|
rto := rtosel.Obj().(*types.Func)
|
|
delta := len(rsel.Index()) - len(rtosel.Index())
|
|
if delta < 0 {
|
|
continue // no ambiguity
|
|
}
|
|
|
|
// TODO(adonovan): record the constraint's position.
|
|
keyPos := token.NoPos
|
|
|
|
r.errorf(from.Pos(), "renaming this method %q to %q",
|
|
from.Name(), r.to)
|
|
if delta == 0 {
|
|
// analogous to same-block conflict
|
|
r.errorf(keyPos, "\twould make the %s method of %s invoked via interface %s ambiguous",
|
|
r.to, key.RHS, key.LHS)
|
|
r.errorf(rto.Pos(), "\twith (%s).%s",
|
|
recv(rto).Type(), r.to)
|
|
} else {
|
|
// analogous to super-block conflict
|
|
r.errorf(keyPos, "\twould change the %s method of %s invoked via interface %s",
|
|
r.to, key.RHS, key.LHS)
|
|
r.errorf(coupled.Pos(), "\tfrom (%s).%s",
|
|
recv(coupled).Type(), r.to)
|
|
r.errorf(rto.Pos(), "\tto (%s).%s",
|
|
recv(rto).Type(), r.to)
|
|
}
|
|
return // one error is enough
|
|
}
|
|
}
|
|
|
|
if !r.changeMethods {
|
|
// This should be unreachable.
|
|
r.errorf(from.Pos(), "internal error: during renaming of abstract method %s", from)
|
|
r.errorf(coupled.Pos(), "\tchangedMethods=false, coupled method=%s", coupled)
|
|
r.errorf(from.Pos(), "\tPlease file a bug report")
|
|
return
|
|
}
|
|
|
|
// Rename the coupled method to preserve assignability.
|
|
r.check(coupled)
|
|
}
|
|
} else {
|
|
// Concrete method
|
|
|
|
// declaration
|
|
prev, indices, _ := types.LookupFieldOrMethod(R, true, from.Pkg(), r.to)
|
|
if prev != nil && len(indices) == 1 {
|
|
r.errorf(from.Pos(), "renaming this method %q to %q",
|
|
from.Name(), r.to)
|
|
r.errorf(prev.Pos(), "\twould conflict with this %s",
|
|
objectKind(prev))
|
|
return
|
|
}
|
|
|
|
// assignability
|
|
//
|
|
// Find the set of abstract methods coupled to concrete
|
|
// method 'from' by some satisfy.Constraint, and rename
|
|
// them too.
|
|
//
|
|
// Coupling may be indirect, e.g. I.f <-> C.f via type D.
|
|
//
|
|
// type I interface {f()}
|
|
// type C int
|
|
// type (C) f()
|
|
// type D struct{C}
|
|
// var _ I = D{}
|
|
//
|
|
for key := range r.satisfy() {
|
|
// key = (lhs, rhs) where lhs is always an interface.
|
|
if isInterface(key.RHS) {
|
|
continue
|
|
}
|
|
rsel := r.msets.MethodSet(key.RHS).Lookup(from.Pkg(), from.Name())
|
|
if rsel == nil || rsel.Obj() != from {
|
|
continue // rhs does not have the method
|
|
}
|
|
lsel := r.msets.MethodSet(key.LHS).Lookup(from.Pkg(), from.Name())
|
|
if lsel == nil {
|
|
continue
|
|
}
|
|
imeth := lsel.Obj().(*types.Func)
|
|
|
|
// imeth is the abstract method (e.g. I.f)
|
|
// and key.RHS is the concrete coupling type (e.g. D).
|
|
if !r.changeMethods {
|
|
r.errorf(from.Pos(), "renaming this method %q to %q",
|
|
from.Name(), r.to)
|
|
var pos token.Pos
|
|
var iface string
|
|
|
|
I := recv(imeth).Type()
|
|
if named, ok := I.(*types.Named); ok {
|
|
pos = named.Obj().Pos()
|
|
iface = "interface " + named.Obj().Name()
|
|
} else {
|
|
pos = from.Pos()
|
|
iface = I.String()
|
|
}
|
|
r.errorf(pos, "\twould make %s no longer assignable to %s",
|
|
key.RHS, iface)
|
|
r.errorf(imeth.Pos(), "\t(rename %s.%s if you intend to change both types)",
|
|
I, from.Name())
|
|
return // one error is enough
|
|
}
|
|
|
|
// Rename the coupled interface method to preserve assignability.
|
|
r.check(imeth)
|
|
}
|
|
}
|
|
|
|
// Check integrity of existing (field and method) selections.
|
|
// We skip this if there were errors above, to avoid redundant errors.
|
|
r.checkSelections(from)
|
|
}
|
|
|
|
func (r *renamer) checkExport(id *ast.Ident, pkg *types.Package, from types.Object) bool {
|
|
// Reject cross-package references if r.to is unexported.
|
|
// (Such references may be qualified identifiers or field/method
|
|
// selections.)
|
|
if !ast.IsExported(r.to) && pkg != from.Pkg() {
|
|
r.errorf(from.Pos(),
|
|
"renaming this %s %q to %q would make it unexported",
|
|
objectKind(from), from.Name(), r.to)
|
|
r.errorf(id.Pos(), "\tbreaking references from packages such as %q",
|
|
pkg.Path())
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
// satisfy returns the set of interface satisfaction constraints.
|
|
func (r *renamer) satisfy() map[satisfy.Constraint]bool {
|
|
if r.satisfyConstraints == nil {
|
|
// Compute on demand: it's expensive.
|
|
var f satisfy.Finder
|
|
for _, info := range r.packages {
|
|
f.Find(&info.Info, info.Files)
|
|
}
|
|
r.satisfyConstraints = f.Result
|
|
}
|
|
return r.satisfyConstraints
|
|
}
|
|
|
|
// -- helpers ----------------------------------------------------------
|
|
|
|
// recv returns the method's receiver.
|
|
func recv(meth *types.Func) *types.Var {
|
|
return meth.Type().(*types.Signature).Recv()
|
|
}
|
|
|
|
// someUse returns an arbitrary use of obj within info.
|
|
func someUse(info *loader.PackageInfo, obj types.Object) *ast.Ident {
|
|
for id, o := range info.Uses {
|
|
if o == obj {
|
|
return id
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// -- Plundered from golang.org/x/tools/go/ssa -----------------
|
|
|
|
func isInterface(T types.Type) bool { return types.IsInterface(T) }
|
|
|
|
func deref(typ types.Type) types.Type {
|
|
if p, _ := typ.(*types.Pointer); p != nil {
|
|
return p.Elem()
|
|
}
|
|
return typ
|
|
}
|