1
0
mirror of https://github.com/golang/go synced 2024-09-25 13:30:12 -06:00
go/test/sorting.go
Russ Cox 5aa7dc5daf adopt suggestions from Bentley and McIlroy (SP&E Nov 1993)
to make qsort more robust:

	* use "ninther" to choose pivot.
	* use three-way partition to avoid quadratic
 	  behavior on all-one-value arrays.

also add tests suggested in that paper.

the immediate cause of the slowness we observed was
in fact none of these: the recursive call was sorting
data[0:m] instead of data[a:m].

also rename package to "sort" to match convention.

R=r,gri
DELTA=358  (255 added, 21 deleted, 82 changed)
OCL=19341
CL=19373
2008-11-17 11:51:34 -08:00

278 lines
5.0 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// $G $F.go && $L $F.$A && ./$A.out
package main
import (
"fmt";
"rand";
"sort";
)
func BentleyMcIlroyTests();
func main() {
{ data := []int{74, 59, 238, -784, 9845, 959, 905, 0, 0, 42, 7586, -5467984, 7586};
a := sort.IntArray{&data};
sort.Sort(&a);
/*
for i := 0; i < len(data); i++ {
print(data[i], " ");
}
print("\n");
*/
if !sort.IsSorted(&a) {
panic();
}
}
{ data := []float{74.3, 59.0, 238.2, -784.0, 2.3, 9845.768, -959.7485, 905, 7.8, 7.8};
a := sort.FloatArray{&data};
sort.Sort(&a);
/*
for i := 0; i < len(data); i++ {
print(data[i], " ");
}
print("\n");
*/
if !sort.IsSorted(&a) {
panic();
}
}
{ data := []string{"", "Hello", "foo", "bar", "foo", "f00", "%*&^*&^&", "***"};
a := sort.StringArray{&data};
sort.Sort(&a);
/*
for i := 0; i < len(data); i++ {
print(data[i], " ");
}
print("\n");
*/
if !sort.IsSorted(&a) {
panic();
}
}
// Same tests again, this time using the convenience wrappers
{ data := []int{74, 59, 238, -784, 9845, 959, 905, 0, 0, 42, 7586, -5467984, 7586};
sort.SortInts(&data);
/*
for i := 0; i < len(data); i++ {
print(data[i], " ");
}
print("\n");
*/
if !sort.IntsAreSorted(&data) {
panic();
}
}
{ data := []float{74.3, 59.0, 238.2, -784.0, 2.3, 9845.768, -959.7485, 905, 7.8, 7.8};
sort.SortFloats(&data);
/*
for i := 0; i < len(data); i++ {
print(data[i], " ");
}
print("\n");
*/
if !sort.FloatsAreSorted(&data) {
panic();
}
}
{ data := []string{"", "Hello", "foo", "bar", "foo", "f00", "%*&^*&^&", "***"};
sort.SortStrings(&data);
/*
for i := 0; i < len(data); i++ {
print(data[i], " ");
}
print("\n");
*/
if !sort.StringsAreSorted(&data) {
panic();
}
}
{
data := new([]int, 100000);
for i := 0; i < len(data); i++ {
data[i] = rand.rand() % 100;
}
if sort.IntsAreSorted(data) {
panic("terrible rand.rand");
}
sort.SortInts(data);
if !sort.IntsAreSorted(data) {
panic();
}
}
BentleyMcIlroyTests();
}
const (
Sawtooth = iota;
Rand;
Stagger;
Plateau;
Shuffle;
NDist;
)
const (
Copy = iota;
Reverse;
ReverseFirstHalf;
ReverseSecondHalf;
Sort;
Dither;
NMode;
);
type TestingData struct {
data *[]int;
maxswap int; // number of swaps allowed
nswap int;
}
func (d *TestingData) len() int { return len(d.data); }
func (d *TestingData) less(i, j int) bool { return d.data[i] < d.data[j]; }
func (d *TestingData) swap(i, j int) {
if d.nswap >= d.maxswap {
panicln("used", d.nswap, "swaps sorting", len(d.data), "array");
}
d.nswap++;
d.data[i], d.data[j] = d.data[j], d.data[i];
}
func Lg(n int) int {
i := 0;
for 1<<uint(i) < n {
i++;
}
return i;
}
func Min(a, b int) int {
if a < b {
return a;
}
return b;
}
func SortIntsTest(mode int, data, x *[]int) {
switch mode {
case Copy:
for i := 0; i < len(data); i++ {
x[i] = data[i];
}
case Reverse:
for i := 0; i < len(data); i++ {
x[i] = data[len(data)-i-1];
}
case ReverseFirstHalf:
n := len(data)/2;
for i := 0; i < n; i++ {
x[i] = data[n-i-1];
}
for i := n; i < len(data); i++ {
x[i] = data[i];
}
case ReverseSecondHalf:
n := len(data)/2;
for i := 0; i < n; i++ {
x[i] = data[i];
}
for i := n; i < len(data); i++ {
x[i] = data[len(data)-(i-n)-1];
}
case Sort:
for i := 0; i < len(data); i++ {
x[i] = data[i];
}
// sort.SortInts is known to be correct
// because mode Sort runs after mode Copy.
sort.SortInts(x[0:len(data)]);
case Dither:
for i := 0; i < len(data); i++ {
x[i] = data[i] + i%5;
}
}
d := &TestingData{x[0:len(data)], len(data)*Lg(len(data))*12/10, 0};
sort.Sort(d);
// If we were testing C qsort, we'd have to make a copy
// of the array and sort it ourselves and then compare
// x against it, to ensure that qsort was only permuting
// the data, not (for example) overwriting it with zeros.
//
// In go, we don't have to be so paranoid: since the only
// mutating method sort.Sort can call is TestingData.swap,
// it suffices here just to check that the final array is sorted.
if !sort.IntsAreSorted(x[0:len(data)]) {
panicln("incorrect sort");
}
}
func BentleyMcIlroyTests() {
sizes := []int{100, 1023, 1024, 1025};
var x, tmp [1025]int;
for ni := 0; ni < len(sizes); ni++ {
n := sizes[ni];
for m := 1; m < 2*n; m *= 2 {
for dist := 0; dist < NDist; dist++ {
j := 0;
k := 1;
for i := 0; i < n; i++ {
switch dist {
case Sawtooth:
x[i] = i % m;
case Rand:
x[i] = rand.rand() % m;
case Stagger:
x[i] = (i*m + i) % n;
case Plateau:
x[i] = Min(i, m);
case Shuffle:
if rand.rand() % m != 0 {
j += 2;
x[i] = j;
} else {
k += 2;
x[i] = k;
}
}
}
data := (&x)[0:n];
for i := 0; i < NMode; i++ {
SortIntsTest(i, data, &tmp);
}
}
}
}
}