mirror of
https://github.com/golang/go
synced 2024-11-22 21:40:03 -07:00
011bf2b6d3
R=r DELTA=6 (0 added, 0 deleted, 6 changed) OCL=27686 CL=27688
1489 lines
31 KiB
Go
Executable File
1489 lines
31 KiB
Go
Executable File
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// A package for arbitrary precision arithmethic.
|
|
// It implements the following numeric types:
|
|
//
|
|
// - Natural unsigned integers
|
|
// - Integer signed integers
|
|
// - Rational rational numbers
|
|
//
|
|
package bignum
|
|
|
|
import "fmt"
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Internal representation
|
|
//
|
|
// A natural number of the form
|
|
//
|
|
// x = x[n-1]*B^(n-1) + x[n-2]*B^(n-2) + ... + x[1]*B + x[0]
|
|
//
|
|
// with 0 <= x[i] < B and 0 <= i < n is stored in a slice of length n,
|
|
// with the digits x[i] as the slice elements.
|
|
//
|
|
// A natural number is normalized if the slice contains no leading 0 digits.
|
|
// During arithmetic operations, denormalized values may occur but are
|
|
// always normalized before returning the final result. The normalized
|
|
// representation of 0 is the empty slice (length = 0).
|
|
//
|
|
// The operations for all other numeric types are implemented on top of
|
|
// the operations for natural numbers.
|
|
//
|
|
// The base B is chosen as large as possible on a given platform but there
|
|
// are a few constraints besides the size of the largest unsigned integer
|
|
// type available:
|
|
//
|
|
// 1) To improve conversion speed between strings and numbers, the base B
|
|
// is chosen such that division and multiplication by 10 (for decimal
|
|
// string representation) can be done without using extended-precision
|
|
// arithmetic. This makes addition, subtraction, and conversion routines
|
|
// twice as fast. It requires a "buffer" of 4 bits per operand digit.
|
|
// That is, the size of B must be 4 bits smaller then the size of the
|
|
// type (digit) in which these operations are performed. Having this
|
|
// buffer also allows for trivial (single-bit) carry computation in
|
|
// addition and subtraction (optimization suggested by Ken Thompson).
|
|
//
|
|
// 2) Long division requires extended-precision (2-digit) division per digit.
|
|
// Instead of sacrificing the largest base type for all other operations,
|
|
// for division the operands are unpacked into "half-digits", and the
|
|
// results are packed again. For faster unpacking/packing, the base size
|
|
// in bits must be even.
|
|
|
|
type (
|
|
digit uint64;
|
|
digit2 uint32; // half-digits for division
|
|
)
|
|
|
|
|
|
const (
|
|
_LogW = 64;
|
|
_LogH = 4; // bits for a hex digit (= "small" number)
|
|
_LogB = _LogW - _LogH; // largest bit-width available
|
|
|
|
// half-digits
|
|
_W2 = _LogB / 2; // width
|
|
_B2 = 1 << _W2; // base
|
|
_M2 = _B2 - 1; // mask
|
|
|
|
// full digits
|
|
_W = _W2 * 2; // width
|
|
_B = 1 << _W; // base
|
|
_M = _B - 1; // mask
|
|
)
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Support functions
|
|
|
|
func assert(p bool) {
|
|
if !p {
|
|
panic("assert failed");
|
|
}
|
|
}
|
|
|
|
|
|
func isSmall(x digit) bool {
|
|
return x < 1<<_LogH;
|
|
}
|
|
|
|
|
|
// For debugging.
|
|
func dump(x []digit) {
|
|
print("[", len(x), "]");
|
|
for i := len(x) - 1; i >= 0; i-- {
|
|
print(" ", x[i]);
|
|
}
|
|
println();
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Natural numbers
|
|
|
|
// Natural represents an unsigned integer value of arbitrary precision.
|
|
//
|
|
type Natural []digit;
|
|
|
|
var (
|
|
natZero Natural = Natural{};
|
|
natOne Natural = Natural{1};
|
|
natTwo Natural = Natural{2};
|
|
natTen Natural = Natural{10};
|
|
)
|
|
|
|
|
|
// Nat creates a "small" natural number with value x.
|
|
// Implementation restriction: At the moment, only values
|
|
// x < (1<<60) are supported.
|
|
//
|
|
func Nat(x uint) Natural {
|
|
switch x {
|
|
case 0: return natZero;
|
|
case 1: return natOne;
|
|
case 2: return natTwo;
|
|
case 10: return natTen;
|
|
}
|
|
assert(digit(x) < _B);
|
|
return Natural{digit(x)};
|
|
}
|
|
|
|
|
|
// IsEven returns true iff x is divisible by 2.
|
|
//
|
|
func (x Natural) IsEven() bool {
|
|
return len(x) == 0 || x[0]&1 == 0;
|
|
}
|
|
|
|
|
|
// IsOdd returns true iff x is not divisible by 2.
|
|
//
|
|
func (x Natural) IsOdd() bool {
|
|
return len(x) > 0 && x[0]&1 != 0;
|
|
}
|
|
|
|
|
|
// IsZero returns true iff x == 0.
|
|
//
|
|
func (x Natural) IsZero() bool {
|
|
return len(x) == 0;
|
|
}
|
|
|
|
|
|
// Operations
|
|
//
|
|
// Naming conventions
|
|
//
|
|
// c carry
|
|
// x, y operands
|
|
// z result
|
|
// n, m len(x), len(y)
|
|
|
|
func normalize(x Natural) Natural {
|
|
n := len(x);
|
|
for n > 0 && x[n - 1] == 0 { n-- }
|
|
if n < len(x) {
|
|
x = x[0 : n]; // trim leading 0's
|
|
}
|
|
return x;
|
|
}
|
|
|
|
|
|
// Add returns the sum x + y.
|
|
//
|
|
func (x Natural) Add(y Natural) Natural {
|
|
n := len(x);
|
|
m := len(y);
|
|
if n < m {
|
|
return y.Add(x);
|
|
}
|
|
|
|
c := digit(0);
|
|
z := make(Natural, n + 1);
|
|
i := 0;
|
|
for i < m {
|
|
t := c + x[i] + y[i];
|
|
c, z[i] = t>>_W, t&_M;
|
|
i++;
|
|
}
|
|
for i < n {
|
|
t := c + x[i];
|
|
c, z[i] = t>>_W, t&_M;
|
|
i++;
|
|
}
|
|
if c != 0 {
|
|
z[i] = c;
|
|
i++;
|
|
}
|
|
|
|
return z[0 : i];
|
|
}
|
|
|
|
|
|
// Sub returns the difference x - y for x >= y.
|
|
// If x < y, an underflow run-time error occurs (use Cmp to test if x >= y).
|
|
//
|
|
func (x Natural) Sub(y Natural) Natural {
|
|
n := len(x);
|
|
m := len(y);
|
|
if n < m {
|
|
panic("underflow")
|
|
}
|
|
|
|
c := digit(0);
|
|
z := make(Natural, n);
|
|
i := 0;
|
|
for i < m {
|
|
t := c + x[i] - y[i];
|
|
c, z[i] = digit(int64(t)>>_W), t&_M; // requires arithmetic shift!
|
|
i++;
|
|
}
|
|
for i < n {
|
|
t := c + x[i];
|
|
c, z[i] = digit(int64(t)>>_W), t&_M; // requires arithmetic shift!
|
|
i++;
|
|
}
|
|
for i > 0 && z[i - 1] == 0 { // normalize
|
|
i--;
|
|
}
|
|
|
|
return z[0 : i];
|
|
}
|
|
|
|
|
|
// Returns c = x*y div B, z = x*y mod B.
|
|
//
|
|
func mul11(x, y digit) (digit, digit) {
|
|
// Split x and y into 2 sub-digits each,
|
|
// multiply the digits separately while avoiding overflow,
|
|
// and return the product as two separate digits.
|
|
|
|
// This code also works for non-even bit widths W
|
|
// which is why there are separate constants below
|
|
// for half-digits.
|
|
const W2 = (_W + 1)/2;
|
|
const DW = W2*2 - _W; // 0 or 1
|
|
const B2 = 1<<W2;
|
|
const M2 = _B2 - 1;
|
|
|
|
// split x and y into sub-digits
|
|
// x = (x1*B2 + x0)
|
|
// y = (y1*B2 + y0)
|
|
x1, x0 := x>>W2, x&M2;
|
|
y1, y0 := y>>W2, y&M2;
|
|
|
|
// x*y = t2*B2^2 + t1*B2 + t0
|
|
t0 := x0*y0;
|
|
t1 := x1*y0 + x0*y1;
|
|
t2 := x1*y1;
|
|
|
|
// compute the result digits but avoid overflow
|
|
// z = z1*B + z0 = x*y
|
|
z0 := (t1<<W2 + t0)&_M;
|
|
z1 := t2<<DW + (t1 + t0>>W2)>>(_W-W2);
|
|
|
|
return z1, z0;
|
|
}
|
|
|
|
|
|
// Mul returns the product x * y.
|
|
//
|
|
func (x Natural) Mul(y Natural) Natural {
|
|
n := len(x);
|
|
m := len(y);
|
|
|
|
z := make(Natural, n + m);
|
|
for j := 0; j < m; j++ {
|
|
d := y[j];
|
|
if d != 0 {
|
|
c := digit(0);
|
|
for i := 0; i < n; i++ {
|
|
// z[i+j] += c + x[i]*d;
|
|
z1, z0 := mul11(x[i], d);
|
|
t := c + z[i+j] + z0;
|
|
c, z[i+j] = t>>_W, t&_M;
|
|
c += z1;
|
|
}
|
|
z[n+j] = c;
|
|
}
|
|
}
|
|
|
|
return normalize(z);
|
|
}
|
|
|
|
|
|
// DivMod needs multi-precision division, which is not available if digit
|
|
// is already using the largest uint size. Instead, unpack each operand
|
|
// into operands with twice as many digits of half the size (digit2), do
|
|
// DivMod, and then pack the results again.
|
|
|
|
func unpack(x Natural) []digit2 {
|
|
n := len(x);
|
|
z := make([]digit2, n*2 + 1); // add space for extra digit (used by DivMod)
|
|
for i := 0; i < n; i++ {
|
|
t := x[i];
|
|
z[i*2] = digit2(t & _M2);
|
|
z[i*2 + 1] = digit2(t >> _W2 & _M2);
|
|
}
|
|
|
|
// normalize result
|
|
k := 2*n;
|
|
for k > 0 && z[k - 1] == 0 { k-- }
|
|
return z[0 : k]; // trim leading 0's
|
|
}
|
|
|
|
|
|
func pack(x []digit2) Natural {
|
|
n := (len(x) + 1) / 2;
|
|
z := make(Natural, n);
|
|
if len(x) & 1 == 1 {
|
|
// handle odd len(x)
|
|
n--;
|
|
z[n] = digit(x[n*2]);
|
|
}
|
|
for i := 0; i < n; i++ {
|
|
z[i] = digit(x[i*2 + 1]) << _W2 | digit(x[i*2]);
|
|
}
|
|
return normalize(z);
|
|
}
|
|
|
|
|
|
func mul1(z, x []digit2, y digit2) digit2 {
|
|
n := len(x);
|
|
c := digit(0);
|
|
f := digit(y);
|
|
for i := 0; i < n; i++ {
|
|
t := c + digit(x[i])*f;
|
|
c, z[i] = t>>_W2, digit2(t&_M2);
|
|
}
|
|
return digit2(c);
|
|
}
|
|
|
|
|
|
func div1(z, x []digit2, y digit2) digit2 {
|
|
n := len(x);
|
|
c := digit(0);
|
|
d := digit(y);
|
|
for i := n-1; i >= 0; i-- {
|
|
t := c*_B2 + digit(x[i]);
|
|
c, z[i] = t%d, digit2(t/d);
|
|
}
|
|
return digit2(c);
|
|
}
|
|
|
|
|
|
// divmod returns q and r with x = y*q + r and 0 <= r < y.
|
|
// x and y are destroyed in the process.
|
|
//
|
|
// The algorithm used here is based on 1). 2) describes the same algorithm
|
|
// in C. A discussion and summary of the relevant theorems can be found in
|
|
// 3). 3) also describes an easier way to obtain the trial digit - however
|
|
// it relies on tripple-precision arithmetic which is why Knuth's method is
|
|
// used here.
|
|
//
|
|
// 1) D. Knuth, "The Art of Computer Programming. Volume 2. Seminumerical
|
|
// Algorithms." Addison-Wesley, Reading, 1969.
|
|
// (Algorithm D, Sec. 4.3.1)
|
|
//
|
|
// 2) Henry S. Warren, Jr., "A Hacker's Delight". Addison-Wesley, 2003.
|
|
// (9-2 Multiword Division, p.140ff)
|
|
//
|
|
// 3) P. Brinch Hansen, Multiple-length division revisited: A tour of the
|
|
// minefield. "Software - Practice and Experience 24", (June 1994),
|
|
// 579-601. John Wiley & Sons, Ltd.
|
|
|
|
func divmod(x, y []digit2) ([]digit2, []digit2) {
|
|
n := len(x);
|
|
m := len(y);
|
|
if m == 0 {
|
|
panic("division by zero");
|
|
}
|
|
assert(n+1 <= cap(x)); // space for one extra digit
|
|
x = x[0 : n + 1];
|
|
assert(x[n] == 0);
|
|
|
|
if m == 1 {
|
|
// division by single digit
|
|
// result is shifted left by 1 in place!
|
|
x[0] = div1(x[1 : n+1], x[0 : n], y[0]);
|
|
|
|
} else if m > n {
|
|
// y > x => quotient = 0, remainder = x
|
|
// TODO in this case we shouldn't even unpack x and y
|
|
m = n;
|
|
|
|
} else {
|
|
// general case
|
|
assert(2 <= m && m <= n);
|
|
|
|
// normalize x and y
|
|
// TODO Instead of multiplying, it would be sufficient to
|
|
// shift y such that the normalization condition is
|
|
// satisfied (as done in "Hacker's Delight").
|
|
f := _B2 / (digit(y[m-1]) + 1);
|
|
if f != 1 {
|
|
mul1(x, x, digit2(f));
|
|
mul1(y, y, digit2(f));
|
|
}
|
|
assert(_B2/2 <= y[m-1] && y[m-1] < _B2); // incorrect scaling
|
|
|
|
y1, y2 := digit(y[m-1]), digit(y[m-2]);
|
|
d2 := digit(y1)<<_W2 + digit(y2);
|
|
for i := n-m; i >= 0; i-- {
|
|
k := i+m;
|
|
|
|
// compute trial digit (Knuth)
|
|
var q digit;
|
|
{ x0, x1, x2 := digit(x[k]), digit(x[k-1]), digit(x[k-2]);
|
|
if x0 != y1 {
|
|
q = (x0<<_W2 + x1)/y1;
|
|
} else {
|
|
q = _B2 - 1;
|
|
}
|
|
for y2*q > (x0<<_W2 + x1 - y1*q)<<_W2 + x2 {
|
|
q--
|
|
}
|
|
}
|
|
|
|
// subtract y*q
|
|
c := digit(0);
|
|
for j := 0; j < m; j++ {
|
|
t := c + digit(x[i+j]) - digit(y[j])*q;
|
|
c, x[i+j] = digit(int64(t) >> _W2), digit2(t & _M2); // requires arithmetic shift!
|
|
}
|
|
|
|
// correct if trial digit was too large
|
|
if c + digit(x[k]) != 0 {
|
|
// add y
|
|
c := digit(0);
|
|
for j := 0; j < m; j++ {
|
|
t := c + digit(x[i+j]) + digit(y[j]);
|
|
c, x[i+j] = t >> _W2, digit2(t & _M2)
|
|
}
|
|
assert(c + digit(x[k]) == 0);
|
|
// correct trial digit
|
|
q--;
|
|
}
|
|
|
|
x[k] = digit2(q);
|
|
}
|
|
|
|
// undo normalization for remainder
|
|
if f != 1 {
|
|
c := div1(x[0 : m], x[0 : m], digit2(f));
|
|
assert(c == 0);
|
|
}
|
|
}
|
|
|
|
return x[m : n+1], x[0 : m];
|
|
}
|
|
|
|
|
|
// Div returns the quotient q = x / y for y > 0,
|
|
// with x = y*q + r and 0 <= r < y.
|
|
// If y == 0, a division-by-zero run-time error occurs.
|
|
//
|
|
func (x Natural) Div(y Natural) Natural {
|
|
q, r := divmod(unpack(x), unpack(y));
|
|
return pack(q);
|
|
}
|
|
|
|
|
|
// Mod returns the modulus r of the division x / y for y > 0,
|
|
// with x = y*q + r and 0 <= r < y.
|
|
// If y == 0, a division-by-zero run-time error occurs.
|
|
//
|
|
func (x Natural) Mod(y Natural) Natural {
|
|
q, r := divmod(unpack(x), unpack(y));
|
|
return pack(r);
|
|
}
|
|
|
|
|
|
// DivMod returns the pair (x.Div(y), x.Mod(y)) for y > 0.
|
|
// If y == 0, a division-by-zero run-time error occurs.
|
|
//
|
|
func (x Natural) DivMod(y Natural) (Natural, Natural) {
|
|
q, r := divmod(unpack(x), unpack(y));
|
|
return pack(q), pack(r);
|
|
}
|
|
|
|
|
|
func shl(z, x []digit, s uint) digit {
|
|
assert(s <= _W);
|
|
n := len(x);
|
|
c := digit(0);
|
|
for i := 0; i < n; i++ {
|
|
c, z[i] = x[i] >> (_W-s), x[i] << s & _M | c;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
|
|
// Shl implements "shift left" x << s. It returns x * 2^s.
|
|
//
|
|
func (x Natural) Shl(s uint) Natural {
|
|
n := uint(len(x));
|
|
m := n + s/_W;
|
|
z := make(Natural, m+1);
|
|
|
|
z[m] = shl(z[m-n : m], x, s%_W);
|
|
|
|
return normalize(z);
|
|
}
|
|
|
|
|
|
func shr(z, x []digit, s uint) digit {
|
|
assert(s <= _W);
|
|
n := len(x);
|
|
c := digit(0);
|
|
for i := n - 1; i >= 0; i-- {
|
|
c, z[i] = x[i] << (_W-s) & _M, x[i] >> s | c;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
|
|
// Shr implements "shift right" x >> s. It returns x / 2^s.
|
|
//
|
|
func (x Natural) Shr(s uint) Natural {
|
|
n := uint(len(x));
|
|
m := n - s/_W;
|
|
if m > n { // check for underflow
|
|
m = 0;
|
|
}
|
|
z := make(Natural, m);
|
|
|
|
shr(z, x[n-m : n], s%_W);
|
|
|
|
return normalize(z);
|
|
}
|
|
|
|
|
|
// And returns the "bitwise and" x & y for the binary representation of x and y.
|
|
//
|
|
func (x Natural) And(y Natural) Natural {
|
|
n := len(x);
|
|
m := len(y);
|
|
if n < m {
|
|
return y.And(x);
|
|
}
|
|
|
|
z := make(Natural, m);
|
|
for i := 0; i < m; i++ {
|
|
z[i] = x[i] & y[i];
|
|
}
|
|
// upper bits are 0
|
|
|
|
return normalize(z);
|
|
}
|
|
|
|
|
|
func copy(z, x []digit) {
|
|
for i, e := range x {
|
|
z[i] = e
|
|
}
|
|
}
|
|
|
|
|
|
// Or returns the "bitwise or" x | y for the binary representation of x and y.
|
|
//
|
|
func (x Natural) Or(y Natural) Natural {
|
|
n := len(x);
|
|
m := len(y);
|
|
if n < m {
|
|
return y.Or(x);
|
|
}
|
|
|
|
z := make(Natural, n);
|
|
for i := 0; i < m; i++ {
|
|
z[i] = x[i] | y[i];
|
|
}
|
|
copy(z[m : n], x[m : n]);
|
|
|
|
return z;
|
|
}
|
|
|
|
|
|
// Xor returns the "bitwise exclusive or" x ^ y for the binary representation of x and y.
|
|
//
|
|
func (x Natural) Xor(y Natural) Natural {
|
|
n := len(x);
|
|
m := len(y);
|
|
if n < m {
|
|
return y.Xor(x);
|
|
}
|
|
|
|
z := make(Natural, n);
|
|
for i := 0; i < m; i++ {
|
|
z[i] = x[i] ^ y[i];
|
|
}
|
|
copy(z[m : n], x[m : n]);
|
|
|
|
return normalize(z);
|
|
}
|
|
|
|
|
|
// Cmp compares x and y. The result is an int value
|
|
//
|
|
// < 0 if x < y
|
|
// == 0 if x == y
|
|
// > 0 if x > y
|
|
//
|
|
func (x Natural) Cmp(y Natural) int {
|
|
n := len(x);
|
|
m := len(y);
|
|
|
|
if n != m || n == 0 {
|
|
return n - m;
|
|
}
|
|
|
|
i := n - 1;
|
|
for i > 0 && x[i] == y[i] { i--; }
|
|
|
|
d := 0;
|
|
switch {
|
|
case x[i] < y[i]: d = -1;
|
|
case x[i] > y[i]: d = 1;
|
|
}
|
|
|
|
return d;
|
|
}
|
|
|
|
|
|
func log2(x digit) uint {
|
|
assert(x > 0);
|
|
n := uint(0);
|
|
for x > 0 {
|
|
x >>= 1;
|
|
n++;
|
|
}
|
|
return n - 1;
|
|
}
|
|
|
|
|
|
// Log2 computes the binary logarithm of x for x > 0.
|
|
// The result is the integer n for which 2^n <= x < 2^(n+1).
|
|
// If x == 0 a run-time error occurs.
|
|
//
|
|
func (x Natural) Log2() uint {
|
|
n := len(x);
|
|
if n > 0 {
|
|
return (uint(n) - 1)*_W + log2(x[n - 1]);
|
|
}
|
|
panic("Log2(0)");
|
|
}
|
|
|
|
|
|
// Computes x = x div d in place (modifies x) for "small" d's.
|
|
// Returns updated x and x mod d.
|
|
//
|
|
func divmod1(x Natural, d digit) (Natural, digit) {
|
|
assert(0 < d && isSmall(d - 1));
|
|
|
|
c := digit(0);
|
|
for i := len(x) - 1; i >= 0; i-- {
|
|
t := c<<_W + x[i];
|
|
c, x[i] = t%d, t/d;
|
|
}
|
|
|
|
return normalize(x), c;
|
|
}
|
|
|
|
|
|
// ToString converts x to a string for a given base, with 2 <= base <= 16.
|
|
//
|
|
func (x Natural) ToString(base uint) string {
|
|
if len(x) == 0 {
|
|
return "0";
|
|
}
|
|
|
|
// allocate buffer for conversion
|
|
assert(2 <= base && base <= 16);
|
|
n := (x.Log2() + 1) / log2(digit(base)) + 1; // +1: round up
|
|
s := make([]byte, n);
|
|
|
|
// don't destroy x
|
|
t := make(Natural, len(x));
|
|
copy(t, x);
|
|
|
|
// convert
|
|
i := n;
|
|
for !t.IsZero() {
|
|
i--;
|
|
var d digit;
|
|
t, d = divmod1(t, digit(base));
|
|
s[i] = "0123456789abcdef"[d];
|
|
};
|
|
|
|
return string(s[i : n]);
|
|
}
|
|
|
|
|
|
// String converts x to its decimal string representation.
|
|
// x.String() is the same as x.ToString(10).
|
|
//
|
|
func (x Natural) String() string {
|
|
return x.ToString(10);
|
|
}
|
|
|
|
|
|
func fmtbase(c int) uint {
|
|
switch c {
|
|
case 'b': return 2;
|
|
case 'o': return 8;
|
|
case 'x': return 16;
|
|
}
|
|
return 10;
|
|
}
|
|
|
|
|
|
// Format is a support routine for fmt.Formatter. It accepts
|
|
// the formats 'b' (binary), 'o' (octal), and 'x' (hexadecimal).
|
|
//
|
|
func (x Natural) Format(h fmt.Formatter, c int) {
|
|
fmt.Fprintf(h, "%s", x.ToString(fmtbase(c)));
|
|
}
|
|
|
|
|
|
func hexvalue(ch byte) uint {
|
|
d := uint(1 << _LogH);
|
|
switch {
|
|
case '0' <= ch && ch <= '9': d = uint(ch - '0');
|
|
case 'a' <= ch && ch <= 'f': d = uint(ch - 'a') + 10;
|
|
case 'A' <= ch && ch <= 'F': d = uint(ch - 'A') + 10;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
|
|
// Computes x = x*d + c for "small" d's.
|
|
//
|
|
func muladd1(x Natural, d, c digit) Natural {
|
|
assert(isSmall(d-1) && isSmall(c));
|
|
n := len(x);
|
|
z := make(Natural, n + 1);
|
|
|
|
for i := 0; i < n; i++ {
|
|
t := c + x[i]*d;
|
|
c, z[i] = t>>_W, t&_M;
|
|
}
|
|
z[n] = c;
|
|
|
|
return normalize(z);
|
|
}
|
|
|
|
|
|
// NatFromString returns the natural number corresponding to the
|
|
// longest possible prefix of s representing a natural number in a
|
|
// given conversion base.
|
|
//
|
|
// If the base argument is 0, the string prefix determines the actual
|
|
// conversion base. A prefix of "0x" or "0X" selects base 16; the "0"
|
|
// prefix selects base 8. Otherwise the selected base is 10.
|
|
//
|
|
// If a non-nil slen argument is provided, *slen is set to the length
|
|
// of the string prefix converted.
|
|
//
|
|
func NatFromString(s string, base uint, slen *int) (Natural, uint) {
|
|
// determine base if necessary
|
|
i, n := 0, len(s);
|
|
if base == 0 {
|
|
base = 10;
|
|
if n > 0 && s[0] == '0' {
|
|
if n > 1 && (s[1] == 'x' || s[1] == 'X') {
|
|
base, i = 16, 2;
|
|
} else {
|
|
base, i = 8, 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// convert string
|
|
assert(2 <= base && base <= 16);
|
|
x := Nat(0);
|
|
for ; i < n; i++ {
|
|
d := hexvalue(s[i]);
|
|
if d < base {
|
|
x = muladd1(x, digit(base), digit(d));
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// provide number of string bytes consumed if necessary
|
|
if slen != nil {
|
|
*slen = i;
|
|
}
|
|
|
|
return x, base;
|
|
}
|
|
|
|
|
|
// Natural number functions
|
|
|
|
func pop1(x digit) uint {
|
|
n := uint(0);
|
|
for x != 0 {
|
|
x &= x-1;
|
|
n++;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
|
|
// Pop computes the "population count" of x.
|
|
// The result is the number of set bits (i.e., "1" digits)
|
|
// in the binary representation of x.
|
|
//
|
|
func (x Natural) Pop() uint {
|
|
n := uint(0);
|
|
for i := len(x) - 1; i >= 0; i-- {
|
|
n += pop1(x[i]);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
|
|
// Pow computes x to the power of n.
|
|
//
|
|
func (xp Natural) Pow(n uint) Natural {
|
|
z := Nat(1);
|
|
x := xp;
|
|
for n > 0 {
|
|
// z * x^n == x^n0
|
|
if n&1 == 1 {
|
|
z = z.Mul(x);
|
|
}
|
|
x, n = x.Mul(x), n/2;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
|
|
// MulRange computes the product of all the unsigned integers
|
|
// in the range [a, b] inclusively.
|
|
//
|
|
func MulRange(a, b uint) Natural {
|
|
switch {
|
|
case a > b: return Nat(1);
|
|
case a == b: return Nat(a);
|
|
case a + 1 == b: return Nat(a).Mul(Nat(b));
|
|
}
|
|
m := (a + b)>>1;
|
|
assert(a <= m && m < b);
|
|
return MulRange(a, m).Mul(MulRange(m + 1, b));
|
|
}
|
|
|
|
|
|
// Fact computes the factorial of n (Fact(n) == MulRange(2, n)).
|
|
//
|
|
func Fact(n uint) Natural {
|
|
// Using MulRange() instead of the basic for-loop
|
|
// lead to faster factorial computation.
|
|
return MulRange(2, n);
|
|
}
|
|
|
|
|
|
// Binomial computes the binomial coefficient of (n, k).
|
|
//
|
|
func Binomial(n, k uint) Natural {
|
|
return MulRange(n-k+1, n).Div(MulRange(1, k));
|
|
}
|
|
|
|
|
|
// Gcd computes the gcd of x and y.
|
|
//
|
|
func (x Natural) Gcd(y Natural) Natural {
|
|
// Euclidean algorithm.
|
|
a, b := x, y;
|
|
for !b.IsZero() {
|
|
a, b = b, a.Mod(b);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Integer numbers
|
|
//
|
|
// Integers are normalized if the mantissa is normalized and the sign is
|
|
// false for mant == 0. Use MakeInt to create normalized Integers.
|
|
|
|
// Integer represents a signed integer value of arbitrary precision.
|
|
//
|
|
type Integer struct {
|
|
sign bool;
|
|
mant Natural;
|
|
}
|
|
|
|
|
|
// MakeInt makes an integer given a sign and a mantissa.
|
|
// The number is positive (>= 0) if sign is false or the
|
|
// mantissa is zero; it is negative otherwise.
|
|
//
|
|
func MakeInt(sign bool, mant Natural) *Integer {
|
|
if mant.IsZero() {
|
|
sign = false; // normalize
|
|
}
|
|
return &Integer{sign, mant};
|
|
}
|
|
|
|
|
|
// Int creates a "small" integer with value x.
|
|
// Implementation restriction: At the moment, only values
|
|
// with an absolute value |x| < (1<<60) are supported.
|
|
//
|
|
func Int(x int) *Integer {
|
|
sign := false;
|
|
var ux uint;
|
|
if x < 0 {
|
|
sign = true;
|
|
if -x == x {
|
|
// smallest negative integer
|
|
t := ^0;
|
|
ux = ^(uint(t) >> 1);
|
|
} else {
|
|
ux = uint(-x);
|
|
}
|
|
} else {
|
|
ux = uint(x);
|
|
}
|
|
return MakeInt(sign, Nat(ux));
|
|
}
|
|
|
|
|
|
// Predicates
|
|
|
|
// IsEven returns true iff x is divisible by 2.
|
|
//
|
|
func (x *Integer) IsEven() bool {
|
|
return x.mant.IsEven();
|
|
}
|
|
|
|
|
|
// IsOdd returns true iff x is not divisible by 2.
|
|
//
|
|
func (x *Integer) IsOdd() bool {
|
|
return x.mant.IsOdd();
|
|
}
|
|
|
|
|
|
// IsZero returns true iff x == 0.
|
|
//
|
|
func (x *Integer) IsZero() bool {
|
|
return x.mant.IsZero();
|
|
}
|
|
|
|
|
|
// IsNeg returns true iff x < 0.
|
|
//
|
|
func (x *Integer) IsNeg() bool {
|
|
return x.sign && !x.mant.IsZero()
|
|
}
|
|
|
|
|
|
// IsPos returns true iff x >= 0.
|
|
//
|
|
func (x *Integer) IsPos() bool {
|
|
return !x.sign && !x.mant.IsZero()
|
|
}
|
|
|
|
|
|
// Operations
|
|
|
|
// Neg returns the negated value of x.
|
|
//
|
|
func (x *Integer) Neg() *Integer {
|
|
return MakeInt(!x.sign, x.mant);
|
|
}
|
|
|
|
|
|
// Add returns the sum x + y.
|
|
//
|
|
func (x *Integer) Add(y *Integer) *Integer {
|
|
var z *Integer;
|
|
if x.sign == y.sign {
|
|
// x + y == x + y
|
|
// (-x) + (-y) == -(x + y)
|
|
z = MakeInt(x.sign, x.mant.Add(y.mant));
|
|
} else {
|
|
// x + (-y) == x - y == -(y - x)
|
|
// (-x) + y == y - x == -(x - y)
|
|
if x.mant.Cmp(y.mant) >= 0 {
|
|
z = MakeInt(false, x.mant.Sub(y.mant));
|
|
} else {
|
|
z = MakeInt(true, y.mant.Sub(x.mant));
|
|
}
|
|
}
|
|
if x.sign {
|
|
z.sign = !z.sign;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
|
|
// Sub returns the difference x - y.
|
|
//
|
|
func (x *Integer) Sub(y *Integer) *Integer {
|
|
var z *Integer;
|
|
if x.sign != y.sign {
|
|
// x - (-y) == x + y
|
|
// (-x) - y == -(x + y)
|
|
z = MakeInt(false, x.mant.Add(y.mant));
|
|
} else {
|
|
// x - y == x - y == -(y - x)
|
|
// (-x) - (-y) == y - x == -(x - y)
|
|
if x.mant.Cmp(y.mant) >= 0 {
|
|
z = MakeInt(false, x.mant.Sub(y.mant));
|
|
} else {
|
|
z = MakeInt(true, y.mant.Sub(x.mant));
|
|
}
|
|
}
|
|
if x.sign {
|
|
z.sign = !z.sign;
|
|
}
|
|
return z;
|
|
}
|
|
|
|
|
|
// Mul returns the product x * y.
|
|
//
|
|
func (x *Integer) Mul(y *Integer) *Integer {
|
|
// x * y == x * y
|
|
// x * (-y) == -(x * y)
|
|
// (-x) * y == -(x * y)
|
|
// (-x) * (-y) == x * y
|
|
return MakeInt(x.sign != y.sign, x.mant.Mul(y.mant));
|
|
}
|
|
|
|
|
|
// MulNat returns the product x * y, where y is a (unsigned) natural number.
|
|
//
|
|
func (x *Integer) MulNat(y Natural) *Integer {
|
|
// x * y == x * y
|
|
// (-x) * y == -(x * y)
|
|
return MakeInt(x.sign, x.mant.Mul(y));
|
|
}
|
|
|
|
|
|
// Quo returns the quotient q = x / y for y != 0.
|
|
// If y == 0, a division-by-zero run-time error occurs.
|
|
//
|
|
// Quo and Rem implement T-division and modulus (like C99):
|
|
//
|
|
// q = x.Quo(y) = trunc(x/y) (truncation towards zero)
|
|
// r = x.Rem(y) = x - y*q
|
|
//
|
|
// (Daan Leijen, "Division and Modulus for Computer Scientists".)
|
|
//
|
|
func (x *Integer) Quo(y *Integer) *Integer {
|
|
// x / y == x / y
|
|
// x / (-y) == -(x / y)
|
|
// (-x) / y == -(x / y)
|
|
// (-x) / (-y) == x / y
|
|
return MakeInt(x.sign != y.sign, x.mant.Div(y.mant));
|
|
}
|
|
|
|
|
|
// Rem returns the remainder r of the division x / y for y != 0,
|
|
// with r = x - y*x.Quo(y). Unless r is zero, its sign corresponds
|
|
// to the sign of x.
|
|
// If y == 0, a division-by-zero run-time error occurs.
|
|
//
|
|
func (x *Integer) Rem(y *Integer) *Integer {
|
|
// x % y == x % y
|
|
// x % (-y) == x % y
|
|
// (-x) % y == -(x % y)
|
|
// (-x) % (-y) == -(x % y)
|
|
return MakeInt(x.sign, x.mant.Mod(y.mant));
|
|
}
|
|
|
|
|
|
// QuoRem returns the pair (x.Quo(y), x.Rem(y)) for y != 0.
|
|
// If y == 0, a division-by-zero run-time error occurs.
|
|
//
|
|
func (x *Integer) QuoRem(y *Integer) (*Integer, *Integer) {
|
|
q, r := x.mant.DivMod(y.mant);
|
|
return MakeInt(x.sign != y.sign, q), MakeInt(x.sign, r);
|
|
}
|
|
|
|
|
|
// Div returns the quotient q = x / y for y != 0.
|
|
// If y == 0, a division-by-zero run-time error occurs.
|
|
//
|
|
// Div and Mod implement Euclidian division and modulus:
|
|
//
|
|
// q = x.Div(y)
|
|
// r = x.Mod(y) with: 0 <= r < |q| and: y = x*q + r
|
|
//
|
|
// (Raymond T. Boute, The Euclidian definition of the functions
|
|
// div and mod. "ACM Transactions on Programming Languages and
|
|
// Systems (TOPLAS)", 14(2):127-144, New York, NY, USA, 4/1992.
|
|
// ACM press.)
|
|
//
|
|
func (x *Integer) Div(y *Integer) *Integer {
|
|
q, r := x.QuoRem(y);
|
|
if r.IsNeg() {
|
|
if y.IsPos() {
|
|
q = q.Sub(Int(1));
|
|
} else {
|
|
q = q.Add(Int(1));
|
|
}
|
|
}
|
|
return q;
|
|
}
|
|
|
|
|
|
// Mod returns the modulus r of the division x / y for y != 0,
|
|
// with r = x - y*x.Div(y). r is always positive.
|
|
// If y == 0, a division-by-zero run-time error occurs.
|
|
//
|
|
func (x *Integer) Mod(y *Integer) *Integer {
|
|
r := x.Rem(y);
|
|
if r.IsNeg() {
|
|
if y.IsPos() {
|
|
r = r.Add(y);
|
|
} else {
|
|
r = r.Sub(y);
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
// DivMod returns the pair (x.Div(y), x.Mod(y)).
|
|
//
|
|
func (x *Integer) DivMod(y *Integer) (*Integer, *Integer) {
|
|
q, r := x.QuoRem(y);
|
|
if r.IsNeg() {
|
|
if y.IsPos() {
|
|
q = q.Sub(Int(1));
|
|
r = r.Add(y);
|
|
} else {
|
|
q = q.Add(Int(1));
|
|
r = r.Sub(y);
|
|
}
|
|
}
|
|
return q, r;
|
|
}
|
|
|
|
|
|
// Shl implements "shift left" x << s. It returns x * 2^s.
|
|
//
|
|
func (x *Integer) Shl(s uint) *Integer {
|
|
return MakeInt(x.sign, x.mant.Shl(s));
|
|
}
|
|
|
|
|
|
// Shr implements "shift right" x >> s. It returns x / 2^s.
|
|
// Implementation restriction: Shl is not yet implemented for negative x.
|
|
//
|
|
func (x *Integer) Shr(s uint) *Integer {
|
|
z := MakeInt(x.sign, x.mant.Shr(s));
|
|
if x.IsNeg() {
|
|
panic("UNIMPLEMENTED Integer.Shr of negative values");
|
|
}
|
|
return z;
|
|
}
|
|
|
|
|
|
// And returns the "bitwise and" x & y for the binary representation of x and y.
|
|
// Implementation restriction: And is not implemented for negative x.
|
|
//
|
|
func (x *Integer) And(y *Integer) *Integer {
|
|
var z *Integer;
|
|
if !x.sign && !y.sign {
|
|
z = MakeInt(false, x.mant.And(y.mant));
|
|
} else {
|
|
panic("UNIMPLEMENTED Integer.And of negative values");
|
|
}
|
|
return z;
|
|
}
|
|
|
|
|
|
// Or returns the "bitwise or" x | y for the binary representation of x and y.
|
|
// Implementation restriction: Or is not implemented for negative x.
|
|
//
|
|
func (x *Integer) Or(y *Integer) *Integer {
|
|
var z *Integer;
|
|
if !x.sign && !y.sign {
|
|
z = MakeInt(false, x.mant.Or(y.mant));
|
|
} else {
|
|
panic("UNIMPLEMENTED Integer.Or of negative values");
|
|
}
|
|
return z;
|
|
}
|
|
|
|
|
|
// Xor returns the "bitwise xor" x | y for the binary representation of x and y.
|
|
// Implementation restriction: Xor is not implemented for negative integers.
|
|
//
|
|
func (x *Integer) Xor(y *Integer) *Integer {
|
|
var z *Integer;
|
|
if !x.sign && !y.sign {
|
|
z = MakeInt(false, x.mant.Xor(y.mant));
|
|
} else {
|
|
panic("UNIMPLEMENTED Integer.Xor of negative values");
|
|
}
|
|
return z;
|
|
}
|
|
|
|
|
|
// Cmp compares x and y. The result is an int value
|
|
//
|
|
// < 0 if x < y
|
|
// == 0 if x == y
|
|
// > 0 if x > y
|
|
//
|
|
func (x *Integer) Cmp(y *Integer) int {
|
|
// x cmp y == x cmp y
|
|
// x cmp (-y) == x
|
|
// (-x) cmp y == y
|
|
// (-x) cmp (-y) == -(x cmp y)
|
|
var r int;
|
|
switch {
|
|
case x.sign == y.sign:
|
|
r = x.mant.Cmp(y.mant);
|
|
if x.sign {
|
|
r = -r;
|
|
}
|
|
case x.sign: r = -1;
|
|
case y.sign: r = 1;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
// ToString converts x to a string for a given base, with 2 <= base <= 16.
|
|
//
|
|
func (x *Integer) ToString(base uint) string {
|
|
if x.mant.IsZero() {
|
|
return "0";
|
|
}
|
|
var s string;
|
|
if x.sign {
|
|
s = "-";
|
|
}
|
|
return s + x.mant.ToString(base);
|
|
}
|
|
|
|
|
|
// String converts x to its decimal string representation.
|
|
// x.String() is the same as x.ToString(10).
|
|
//
|
|
func (x *Integer) String() string {
|
|
return x.ToString(10);
|
|
}
|
|
|
|
|
|
// Format is a support routine for fmt.Formatter. It accepts
|
|
// the formats 'b' (binary), 'o' (octal), and 'x' (hexadecimal).
|
|
//
|
|
func (x *Integer) Format(h fmt.Formatter, c int) {
|
|
fmt.Fprintf(h, "%s", x.ToString(fmtbase(c)));
|
|
}
|
|
|
|
|
|
// IntFromString returns the integer corresponding to the
|
|
// longest possible prefix of s representing an integer in a
|
|
// given conversion base.
|
|
//
|
|
// If the base argument is 0, the string prefix determines the actual
|
|
// conversion base. A prefix of "0x" or "0X" selects base 16; the "0"
|
|
// prefix selects base 8. Otherwise the selected base is 10.
|
|
//
|
|
// If a non-nil slen argument is provided, *slen is set to the length
|
|
// of the string prefix converted.
|
|
//
|
|
func IntFromString(s string, base uint, slen *int) (*Integer, uint) {
|
|
// get sign, if any
|
|
sign := false;
|
|
if len(s) > 0 && (s[0] == '-' || s[0] == '+') {
|
|
sign = s[0] == '-';
|
|
s = s[1 : len(s)];
|
|
}
|
|
|
|
var mant Natural;
|
|
mant, base = NatFromString(s, base, slen);
|
|
|
|
// correct slen if necessary
|
|
if slen != nil && sign {
|
|
*slen++;
|
|
}
|
|
|
|
return MakeInt(sign, mant), base;
|
|
}
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Rational numbers
|
|
|
|
// Rational represents a quotient a/b of arbitrary precision.
|
|
//
|
|
type Rational struct {
|
|
a *Integer; // numerator
|
|
b Natural; // denominator
|
|
}
|
|
|
|
|
|
// MakeRat makes a rational number given a numerator a and a denominator b.
|
|
//
|
|
func MakeRat(a *Integer, b Natural) *Rational {
|
|
f := a.mant.Gcd(b); // f > 0
|
|
if f.Cmp(Nat(1)) != 0 {
|
|
a = MakeInt(a.sign, a.mant.Div(f));
|
|
b = b.Div(f);
|
|
}
|
|
return &Rational{a, b};
|
|
}
|
|
|
|
|
|
// Rat creates a "small" rational number with value a0/b0.
|
|
// Implementation restriction: At the moment, only values a0, b0
|
|
// with an absolute value |a0|, |b0| < (1<<60) are supported.
|
|
//
|
|
func Rat(a0 int, b0 int) *Rational {
|
|
a, b := Int(a0), Int(b0);
|
|
if b.sign {
|
|
a = a.Neg();
|
|
}
|
|
return MakeRat(a, b.mant);
|
|
}
|
|
|
|
|
|
// Predicates
|
|
|
|
// IsZero returns true iff x == 0.
|
|
//
|
|
func (x *Rational) IsZero() bool {
|
|
return x.a.IsZero();
|
|
}
|
|
|
|
|
|
// IsNeg returns true iff x < 0.
|
|
//
|
|
func (x *Rational) IsNeg() bool {
|
|
return x.a.IsNeg();
|
|
}
|
|
|
|
|
|
// IsPos returns true iff x > 0.
|
|
//
|
|
func (x *Rational) IsPos() bool {
|
|
return x.a.IsPos();
|
|
}
|
|
|
|
|
|
// IsInt returns true iff x can be written with a denominator 1
|
|
// in the form x == x'/1; i.e., if x is an integer value.
|
|
//
|
|
func (x *Rational) IsInt() bool {
|
|
return x.b.Cmp(Nat(1)) == 0;
|
|
}
|
|
|
|
|
|
// Operations
|
|
|
|
// Neg returns the negated value of x.
|
|
//
|
|
func (x *Rational) Neg() *Rational {
|
|
return MakeRat(x.a.Neg(), x.b);
|
|
}
|
|
|
|
|
|
// Add returns the sum x + y.
|
|
//
|
|
func (x *Rational) Add(y *Rational) *Rational {
|
|
return MakeRat((x.a.MulNat(y.b)).Add(y.a.MulNat(x.b)), x.b.Mul(y.b));
|
|
}
|
|
|
|
|
|
// Sub returns the difference x - y.
|
|
//
|
|
func (x *Rational) Sub(y *Rational) *Rational {
|
|
return MakeRat((x.a.MulNat(y.b)).Sub(y.a.MulNat(x.b)), x.b.Mul(y.b));
|
|
}
|
|
|
|
|
|
// Mul returns the product x * y.
|
|
//
|
|
func (x *Rational) Mul(y *Rational) *Rational {
|
|
return MakeRat(x.a.Mul(y.a), x.b.Mul(y.b));
|
|
}
|
|
|
|
|
|
// Quo returns the quotient x / y for y != 0.
|
|
// If y == 0, a division-by-zero run-time error occurs.
|
|
//
|
|
func (x *Rational) Quo(y *Rational) *Rational {
|
|
a := x.a.MulNat(y.b);
|
|
b := y.a.MulNat(x.b);
|
|
if b.IsNeg() {
|
|
a = a.Neg();
|
|
}
|
|
return MakeRat(a, b.mant);
|
|
}
|
|
|
|
|
|
// Cmp compares x and y. The result is an int value
|
|
//
|
|
// < 0 if x < y
|
|
// == 0 if x == y
|
|
// > 0 if x > y
|
|
//
|
|
func (x *Rational) Cmp(y *Rational) int {
|
|
return (x.a.MulNat(y.b)).Cmp(y.a.MulNat(x.b));
|
|
}
|
|
|
|
|
|
// ToString converts x to a string for a given base, with 2 <= base <= 16.
|
|
// The string representation is of the form "numerator/denominator".
|
|
//
|
|
func (x *Rational) ToString(base uint) string {
|
|
s := x.a.ToString(base);
|
|
if !x.IsInt() {
|
|
s += "/" + x.b.ToString(base);
|
|
}
|
|
return s;
|
|
}
|
|
|
|
|
|
// String converts x to its decimal string representation.
|
|
// x.String() is the same as x.ToString(10).
|
|
//
|
|
func (x *Rational) String() string {
|
|
return x.ToString(10);
|
|
}
|
|
|
|
|
|
// Format is a support routine for fmt.Formatter. It accepts
|
|
// the formats 'b' (binary), 'o' (octal), and 'x' (hexadecimal).
|
|
//
|
|
func (x *Rational) Format(h fmt.Formatter, c int) {
|
|
fmt.Fprintf(h, "%s", x.ToString(fmtbase(c)));
|
|
}
|
|
|
|
|
|
// RatFromString returns the rational number corresponding to the
|
|
// longest possible prefix of s representing a rational number in a
|
|
// given conversion base.
|
|
//
|
|
// If the base argument is 0, the string prefix determines the actual
|
|
// conversion base. A prefix of "0x" or "0X" selects base 16; the "0"
|
|
// prefix selects base 8. Otherwise the selected base is 10.
|
|
//
|
|
// If a non-nil slen argument is provided, *slen is set to the length
|
|
// of the string prefix converted.
|
|
//
|
|
func RatFromString(s string, base uint, slen *int) (*Rational, uint) {
|
|
// read nominator
|
|
var alen, blen int;
|
|
a, abase := IntFromString(s, base, &alen);
|
|
b := Nat(1);
|
|
|
|
// read denominator or fraction, if any
|
|
if alen < len(s) {
|
|
ch := s[alen];
|
|
if ch == '/' {
|
|
alen++;
|
|
b, base = NatFromString(s[alen : len(s)], base, &blen);
|
|
} else if ch == '.' {
|
|
alen++;
|
|
b, base = NatFromString(s[alen : len(s)], abase, &blen);
|
|
assert(base == abase);
|
|
f := Nat(base).Pow(uint(blen));
|
|
a = MakeInt(a.sign, a.mant.Mul(f).Add(b));
|
|
b = f;
|
|
}
|
|
}
|
|
|
|
// provide number of string bytes consumed if necessary
|
|
if slen != nil {
|
|
*slen = alen + blen;
|
|
}
|
|
|
|
return MakeRat(a, b), abase;
|
|
}
|