1
0
mirror of https://github.com/golang/go synced 2024-11-22 21:40:03 -07:00
go/src/lib/bignum.go
Robert Griesemer 011bf2b6d3 minor adjustments to comments for better godoc output
R=r
DELTA=6  (0 added, 0 deleted, 6 changed)
OCL=27686
CL=27688
2009-04-21 15:14:34 -07:00

1489 lines
31 KiB
Go
Executable File

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// A package for arbitrary precision arithmethic.
// It implements the following numeric types:
//
// - Natural unsigned integers
// - Integer signed integers
// - Rational rational numbers
//
package bignum
import "fmt"
// ----------------------------------------------------------------------------
// Internal representation
//
// A natural number of the form
//
// x = x[n-1]*B^(n-1) + x[n-2]*B^(n-2) + ... + x[1]*B + x[0]
//
// with 0 <= x[i] < B and 0 <= i < n is stored in a slice of length n,
// with the digits x[i] as the slice elements.
//
// A natural number is normalized if the slice contains no leading 0 digits.
// During arithmetic operations, denormalized values may occur but are
// always normalized before returning the final result. The normalized
// representation of 0 is the empty slice (length = 0).
//
// The operations for all other numeric types are implemented on top of
// the operations for natural numbers.
//
// The base B is chosen as large as possible on a given platform but there
// are a few constraints besides the size of the largest unsigned integer
// type available:
//
// 1) To improve conversion speed between strings and numbers, the base B
// is chosen such that division and multiplication by 10 (for decimal
// string representation) can be done without using extended-precision
// arithmetic. This makes addition, subtraction, and conversion routines
// twice as fast. It requires a "buffer" of 4 bits per operand digit.
// That is, the size of B must be 4 bits smaller then the size of the
// type (digit) in which these operations are performed. Having this
// buffer also allows for trivial (single-bit) carry computation in
// addition and subtraction (optimization suggested by Ken Thompson).
//
// 2) Long division requires extended-precision (2-digit) division per digit.
// Instead of sacrificing the largest base type for all other operations,
// for division the operands are unpacked into "half-digits", and the
// results are packed again. For faster unpacking/packing, the base size
// in bits must be even.
type (
digit uint64;
digit2 uint32; // half-digits for division
)
const (
_LogW = 64;
_LogH = 4; // bits for a hex digit (= "small" number)
_LogB = _LogW - _LogH; // largest bit-width available
// half-digits
_W2 = _LogB / 2; // width
_B2 = 1 << _W2; // base
_M2 = _B2 - 1; // mask
// full digits
_W = _W2 * 2; // width
_B = 1 << _W; // base
_M = _B - 1; // mask
)
// ----------------------------------------------------------------------------
// Support functions
func assert(p bool) {
if !p {
panic("assert failed");
}
}
func isSmall(x digit) bool {
return x < 1<<_LogH;
}
// For debugging.
func dump(x []digit) {
print("[", len(x), "]");
for i := len(x) - 1; i >= 0; i-- {
print(" ", x[i]);
}
println();
}
// ----------------------------------------------------------------------------
// Natural numbers
// Natural represents an unsigned integer value of arbitrary precision.
//
type Natural []digit;
var (
natZero Natural = Natural{};
natOne Natural = Natural{1};
natTwo Natural = Natural{2};
natTen Natural = Natural{10};
)
// Nat creates a "small" natural number with value x.
// Implementation restriction: At the moment, only values
// x < (1<<60) are supported.
//
func Nat(x uint) Natural {
switch x {
case 0: return natZero;
case 1: return natOne;
case 2: return natTwo;
case 10: return natTen;
}
assert(digit(x) < _B);
return Natural{digit(x)};
}
// IsEven returns true iff x is divisible by 2.
//
func (x Natural) IsEven() bool {
return len(x) == 0 || x[0]&1 == 0;
}
// IsOdd returns true iff x is not divisible by 2.
//
func (x Natural) IsOdd() bool {
return len(x) > 0 && x[0]&1 != 0;
}
// IsZero returns true iff x == 0.
//
func (x Natural) IsZero() bool {
return len(x) == 0;
}
// Operations
//
// Naming conventions
//
// c carry
// x, y operands
// z result
// n, m len(x), len(y)
func normalize(x Natural) Natural {
n := len(x);
for n > 0 && x[n - 1] == 0 { n-- }
if n < len(x) {
x = x[0 : n]; // trim leading 0's
}
return x;
}
// Add returns the sum x + y.
//
func (x Natural) Add(y Natural) Natural {
n := len(x);
m := len(y);
if n < m {
return y.Add(x);
}
c := digit(0);
z := make(Natural, n + 1);
i := 0;
for i < m {
t := c + x[i] + y[i];
c, z[i] = t>>_W, t&_M;
i++;
}
for i < n {
t := c + x[i];
c, z[i] = t>>_W, t&_M;
i++;
}
if c != 0 {
z[i] = c;
i++;
}
return z[0 : i];
}
// Sub returns the difference x - y for x >= y.
// If x < y, an underflow run-time error occurs (use Cmp to test if x >= y).
//
func (x Natural) Sub(y Natural) Natural {
n := len(x);
m := len(y);
if n < m {
panic("underflow")
}
c := digit(0);
z := make(Natural, n);
i := 0;
for i < m {
t := c + x[i] - y[i];
c, z[i] = digit(int64(t)>>_W), t&_M; // requires arithmetic shift!
i++;
}
for i < n {
t := c + x[i];
c, z[i] = digit(int64(t)>>_W), t&_M; // requires arithmetic shift!
i++;
}
for i > 0 && z[i - 1] == 0 { // normalize
i--;
}
return z[0 : i];
}
// Returns c = x*y div B, z = x*y mod B.
//
func mul11(x, y digit) (digit, digit) {
// Split x and y into 2 sub-digits each,
// multiply the digits separately while avoiding overflow,
// and return the product as two separate digits.
// This code also works for non-even bit widths W
// which is why there are separate constants below
// for half-digits.
const W2 = (_W + 1)/2;
const DW = W2*2 - _W; // 0 or 1
const B2 = 1<<W2;
const M2 = _B2 - 1;
// split x and y into sub-digits
// x = (x1*B2 + x0)
// y = (y1*B2 + y0)
x1, x0 := x>>W2, x&M2;
y1, y0 := y>>W2, y&M2;
// x*y = t2*B2^2 + t1*B2 + t0
t0 := x0*y0;
t1 := x1*y0 + x0*y1;
t2 := x1*y1;
// compute the result digits but avoid overflow
// z = z1*B + z0 = x*y
z0 := (t1<<W2 + t0)&_M;
z1 := t2<<DW + (t1 + t0>>W2)>>(_W-W2);
return z1, z0;
}
// Mul returns the product x * y.
//
func (x Natural) Mul(y Natural) Natural {
n := len(x);
m := len(y);
z := make(Natural, n + m);
for j := 0; j < m; j++ {
d := y[j];
if d != 0 {
c := digit(0);
for i := 0; i < n; i++ {
// z[i+j] += c + x[i]*d;
z1, z0 := mul11(x[i], d);
t := c + z[i+j] + z0;
c, z[i+j] = t>>_W, t&_M;
c += z1;
}
z[n+j] = c;
}
}
return normalize(z);
}
// DivMod needs multi-precision division, which is not available if digit
// is already using the largest uint size. Instead, unpack each operand
// into operands with twice as many digits of half the size (digit2), do
// DivMod, and then pack the results again.
func unpack(x Natural) []digit2 {
n := len(x);
z := make([]digit2, n*2 + 1); // add space for extra digit (used by DivMod)
for i := 0; i < n; i++ {
t := x[i];
z[i*2] = digit2(t & _M2);
z[i*2 + 1] = digit2(t >> _W2 & _M2);
}
// normalize result
k := 2*n;
for k > 0 && z[k - 1] == 0 { k-- }
return z[0 : k]; // trim leading 0's
}
func pack(x []digit2) Natural {
n := (len(x) + 1) / 2;
z := make(Natural, n);
if len(x) & 1 == 1 {
// handle odd len(x)
n--;
z[n] = digit(x[n*2]);
}
for i := 0; i < n; i++ {
z[i] = digit(x[i*2 + 1]) << _W2 | digit(x[i*2]);
}
return normalize(z);
}
func mul1(z, x []digit2, y digit2) digit2 {
n := len(x);
c := digit(0);
f := digit(y);
for i := 0; i < n; i++ {
t := c + digit(x[i])*f;
c, z[i] = t>>_W2, digit2(t&_M2);
}
return digit2(c);
}
func div1(z, x []digit2, y digit2) digit2 {
n := len(x);
c := digit(0);
d := digit(y);
for i := n-1; i >= 0; i-- {
t := c*_B2 + digit(x[i]);
c, z[i] = t%d, digit2(t/d);
}
return digit2(c);
}
// divmod returns q and r with x = y*q + r and 0 <= r < y.
// x and y are destroyed in the process.
//
// The algorithm used here is based on 1). 2) describes the same algorithm
// in C. A discussion and summary of the relevant theorems can be found in
// 3). 3) also describes an easier way to obtain the trial digit - however
// it relies on tripple-precision arithmetic which is why Knuth's method is
// used here.
//
// 1) D. Knuth, "The Art of Computer Programming. Volume 2. Seminumerical
// Algorithms." Addison-Wesley, Reading, 1969.
// (Algorithm D, Sec. 4.3.1)
//
// 2) Henry S. Warren, Jr., "A Hacker's Delight". Addison-Wesley, 2003.
// (9-2 Multiword Division, p.140ff)
//
// 3) P. Brinch Hansen, Multiple-length division revisited: A tour of the
// minefield. "Software - Practice and Experience 24", (June 1994),
// 579-601. John Wiley & Sons, Ltd.
func divmod(x, y []digit2) ([]digit2, []digit2) {
n := len(x);
m := len(y);
if m == 0 {
panic("division by zero");
}
assert(n+1 <= cap(x)); // space for one extra digit
x = x[0 : n + 1];
assert(x[n] == 0);
if m == 1 {
// division by single digit
// result is shifted left by 1 in place!
x[0] = div1(x[1 : n+1], x[0 : n], y[0]);
} else if m > n {
// y > x => quotient = 0, remainder = x
// TODO in this case we shouldn't even unpack x and y
m = n;
} else {
// general case
assert(2 <= m && m <= n);
// normalize x and y
// TODO Instead of multiplying, it would be sufficient to
// shift y such that the normalization condition is
// satisfied (as done in "Hacker's Delight").
f := _B2 / (digit(y[m-1]) + 1);
if f != 1 {
mul1(x, x, digit2(f));
mul1(y, y, digit2(f));
}
assert(_B2/2 <= y[m-1] && y[m-1] < _B2); // incorrect scaling
y1, y2 := digit(y[m-1]), digit(y[m-2]);
d2 := digit(y1)<<_W2 + digit(y2);
for i := n-m; i >= 0; i-- {
k := i+m;
// compute trial digit (Knuth)
var q digit;
{ x0, x1, x2 := digit(x[k]), digit(x[k-1]), digit(x[k-2]);
if x0 != y1 {
q = (x0<<_W2 + x1)/y1;
} else {
q = _B2 - 1;
}
for y2*q > (x0<<_W2 + x1 - y1*q)<<_W2 + x2 {
q--
}
}
// subtract y*q
c := digit(0);
for j := 0; j < m; j++ {
t := c + digit(x[i+j]) - digit(y[j])*q;
c, x[i+j] = digit(int64(t) >> _W2), digit2(t & _M2); // requires arithmetic shift!
}
// correct if trial digit was too large
if c + digit(x[k]) != 0 {
// add y
c := digit(0);
for j := 0; j < m; j++ {
t := c + digit(x[i+j]) + digit(y[j]);
c, x[i+j] = t >> _W2, digit2(t & _M2)
}
assert(c + digit(x[k]) == 0);
// correct trial digit
q--;
}
x[k] = digit2(q);
}
// undo normalization for remainder
if f != 1 {
c := div1(x[0 : m], x[0 : m], digit2(f));
assert(c == 0);
}
}
return x[m : n+1], x[0 : m];
}
// Div returns the quotient q = x / y for y > 0,
// with x = y*q + r and 0 <= r < y.
// If y == 0, a division-by-zero run-time error occurs.
//
func (x Natural) Div(y Natural) Natural {
q, r := divmod(unpack(x), unpack(y));
return pack(q);
}
// Mod returns the modulus r of the division x / y for y > 0,
// with x = y*q + r and 0 <= r < y.
// If y == 0, a division-by-zero run-time error occurs.
//
func (x Natural) Mod(y Natural) Natural {
q, r := divmod(unpack(x), unpack(y));
return pack(r);
}
// DivMod returns the pair (x.Div(y), x.Mod(y)) for y > 0.
// If y == 0, a division-by-zero run-time error occurs.
//
func (x Natural) DivMod(y Natural) (Natural, Natural) {
q, r := divmod(unpack(x), unpack(y));
return pack(q), pack(r);
}
func shl(z, x []digit, s uint) digit {
assert(s <= _W);
n := len(x);
c := digit(0);
for i := 0; i < n; i++ {
c, z[i] = x[i] >> (_W-s), x[i] << s & _M | c;
}
return c;
}
// Shl implements "shift left" x << s. It returns x * 2^s.
//
func (x Natural) Shl(s uint) Natural {
n := uint(len(x));
m := n + s/_W;
z := make(Natural, m+1);
z[m] = shl(z[m-n : m], x, s%_W);
return normalize(z);
}
func shr(z, x []digit, s uint) digit {
assert(s <= _W);
n := len(x);
c := digit(0);
for i := n - 1; i >= 0; i-- {
c, z[i] = x[i] << (_W-s) & _M, x[i] >> s | c;
}
return c;
}
// Shr implements "shift right" x >> s. It returns x / 2^s.
//
func (x Natural) Shr(s uint) Natural {
n := uint(len(x));
m := n - s/_W;
if m > n { // check for underflow
m = 0;
}
z := make(Natural, m);
shr(z, x[n-m : n], s%_W);
return normalize(z);
}
// And returns the "bitwise and" x & y for the binary representation of x and y.
//
func (x Natural) And(y Natural) Natural {
n := len(x);
m := len(y);
if n < m {
return y.And(x);
}
z := make(Natural, m);
for i := 0; i < m; i++ {
z[i] = x[i] & y[i];
}
// upper bits are 0
return normalize(z);
}
func copy(z, x []digit) {
for i, e := range x {
z[i] = e
}
}
// Or returns the "bitwise or" x | y for the binary representation of x and y.
//
func (x Natural) Or(y Natural) Natural {
n := len(x);
m := len(y);
if n < m {
return y.Or(x);
}
z := make(Natural, n);
for i := 0; i < m; i++ {
z[i] = x[i] | y[i];
}
copy(z[m : n], x[m : n]);
return z;
}
// Xor returns the "bitwise exclusive or" x ^ y for the binary representation of x and y.
//
func (x Natural) Xor(y Natural) Natural {
n := len(x);
m := len(y);
if n < m {
return y.Xor(x);
}
z := make(Natural, n);
for i := 0; i < m; i++ {
z[i] = x[i] ^ y[i];
}
copy(z[m : n], x[m : n]);
return normalize(z);
}
// Cmp compares x and y. The result is an int value
//
// < 0 if x < y
// == 0 if x == y
// > 0 if x > y
//
func (x Natural) Cmp(y Natural) int {
n := len(x);
m := len(y);
if n != m || n == 0 {
return n - m;
}
i := n - 1;
for i > 0 && x[i] == y[i] { i--; }
d := 0;
switch {
case x[i] < y[i]: d = -1;
case x[i] > y[i]: d = 1;
}
return d;
}
func log2(x digit) uint {
assert(x > 0);
n := uint(0);
for x > 0 {
x >>= 1;
n++;
}
return n - 1;
}
// Log2 computes the binary logarithm of x for x > 0.
// The result is the integer n for which 2^n <= x < 2^(n+1).
// If x == 0 a run-time error occurs.
//
func (x Natural) Log2() uint {
n := len(x);
if n > 0 {
return (uint(n) - 1)*_W + log2(x[n - 1]);
}
panic("Log2(0)");
}
// Computes x = x div d in place (modifies x) for "small" d's.
// Returns updated x and x mod d.
//
func divmod1(x Natural, d digit) (Natural, digit) {
assert(0 < d && isSmall(d - 1));
c := digit(0);
for i := len(x) - 1; i >= 0; i-- {
t := c<<_W + x[i];
c, x[i] = t%d, t/d;
}
return normalize(x), c;
}
// ToString converts x to a string for a given base, with 2 <= base <= 16.
//
func (x Natural) ToString(base uint) string {
if len(x) == 0 {
return "0";
}
// allocate buffer for conversion
assert(2 <= base && base <= 16);
n := (x.Log2() + 1) / log2(digit(base)) + 1; // +1: round up
s := make([]byte, n);
// don't destroy x
t := make(Natural, len(x));
copy(t, x);
// convert
i := n;
for !t.IsZero() {
i--;
var d digit;
t, d = divmod1(t, digit(base));
s[i] = "0123456789abcdef"[d];
};
return string(s[i : n]);
}
// String converts x to its decimal string representation.
// x.String() is the same as x.ToString(10).
//
func (x Natural) String() string {
return x.ToString(10);
}
func fmtbase(c int) uint {
switch c {
case 'b': return 2;
case 'o': return 8;
case 'x': return 16;
}
return 10;
}
// Format is a support routine for fmt.Formatter. It accepts
// the formats 'b' (binary), 'o' (octal), and 'x' (hexadecimal).
//
func (x Natural) Format(h fmt.Formatter, c int) {
fmt.Fprintf(h, "%s", x.ToString(fmtbase(c)));
}
func hexvalue(ch byte) uint {
d := uint(1 << _LogH);
switch {
case '0' <= ch && ch <= '9': d = uint(ch - '0');
case 'a' <= ch && ch <= 'f': d = uint(ch - 'a') + 10;
case 'A' <= ch && ch <= 'F': d = uint(ch - 'A') + 10;
}
return d;
}
// Computes x = x*d + c for "small" d's.
//
func muladd1(x Natural, d, c digit) Natural {
assert(isSmall(d-1) && isSmall(c));
n := len(x);
z := make(Natural, n + 1);
for i := 0; i < n; i++ {
t := c + x[i]*d;
c, z[i] = t>>_W, t&_M;
}
z[n] = c;
return normalize(z);
}
// NatFromString returns the natural number corresponding to the
// longest possible prefix of s representing a natural number in a
// given conversion base.
//
// If the base argument is 0, the string prefix determines the actual
// conversion base. A prefix of "0x" or "0X" selects base 16; the "0"
// prefix selects base 8. Otherwise the selected base is 10.
//
// If a non-nil slen argument is provided, *slen is set to the length
// of the string prefix converted.
//
func NatFromString(s string, base uint, slen *int) (Natural, uint) {
// determine base if necessary
i, n := 0, len(s);
if base == 0 {
base = 10;
if n > 0 && s[0] == '0' {
if n > 1 && (s[1] == 'x' || s[1] == 'X') {
base, i = 16, 2;
} else {
base, i = 8, 1;
}
}
}
// convert string
assert(2 <= base && base <= 16);
x := Nat(0);
for ; i < n; i++ {
d := hexvalue(s[i]);
if d < base {
x = muladd1(x, digit(base), digit(d));
} else {
break;
}
}
// provide number of string bytes consumed if necessary
if slen != nil {
*slen = i;
}
return x, base;
}
// Natural number functions
func pop1(x digit) uint {
n := uint(0);
for x != 0 {
x &= x-1;
n++;
}
return n;
}
// Pop computes the "population count" of x.
// The result is the number of set bits (i.e., "1" digits)
// in the binary representation of x.
//
func (x Natural) Pop() uint {
n := uint(0);
for i := len(x) - 1; i >= 0; i-- {
n += pop1(x[i]);
}
return n;
}
// Pow computes x to the power of n.
//
func (xp Natural) Pow(n uint) Natural {
z := Nat(1);
x := xp;
for n > 0 {
// z * x^n == x^n0
if n&1 == 1 {
z = z.Mul(x);
}
x, n = x.Mul(x), n/2;
}
return z;
}
// MulRange computes the product of all the unsigned integers
// in the range [a, b] inclusively.
//
func MulRange(a, b uint) Natural {
switch {
case a > b: return Nat(1);
case a == b: return Nat(a);
case a + 1 == b: return Nat(a).Mul(Nat(b));
}
m := (a + b)>>1;
assert(a <= m && m < b);
return MulRange(a, m).Mul(MulRange(m + 1, b));
}
// Fact computes the factorial of n (Fact(n) == MulRange(2, n)).
//
func Fact(n uint) Natural {
// Using MulRange() instead of the basic for-loop
// lead to faster factorial computation.
return MulRange(2, n);
}
// Binomial computes the binomial coefficient of (n, k).
//
func Binomial(n, k uint) Natural {
return MulRange(n-k+1, n).Div(MulRange(1, k));
}
// Gcd computes the gcd of x and y.
//
func (x Natural) Gcd(y Natural) Natural {
// Euclidean algorithm.
a, b := x, y;
for !b.IsZero() {
a, b = b, a.Mod(b);
}
return a;
}
// ----------------------------------------------------------------------------
// Integer numbers
//
// Integers are normalized if the mantissa is normalized and the sign is
// false for mant == 0. Use MakeInt to create normalized Integers.
// Integer represents a signed integer value of arbitrary precision.
//
type Integer struct {
sign bool;
mant Natural;
}
// MakeInt makes an integer given a sign and a mantissa.
// The number is positive (>= 0) if sign is false or the
// mantissa is zero; it is negative otherwise.
//
func MakeInt(sign bool, mant Natural) *Integer {
if mant.IsZero() {
sign = false; // normalize
}
return &Integer{sign, mant};
}
// Int creates a "small" integer with value x.
// Implementation restriction: At the moment, only values
// with an absolute value |x| < (1<<60) are supported.
//
func Int(x int) *Integer {
sign := false;
var ux uint;
if x < 0 {
sign = true;
if -x == x {
// smallest negative integer
t := ^0;
ux = ^(uint(t) >> 1);
} else {
ux = uint(-x);
}
} else {
ux = uint(x);
}
return MakeInt(sign, Nat(ux));
}
// Predicates
// IsEven returns true iff x is divisible by 2.
//
func (x *Integer) IsEven() bool {
return x.mant.IsEven();
}
// IsOdd returns true iff x is not divisible by 2.
//
func (x *Integer) IsOdd() bool {
return x.mant.IsOdd();
}
// IsZero returns true iff x == 0.
//
func (x *Integer) IsZero() bool {
return x.mant.IsZero();
}
// IsNeg returns true iff x < 0.
//
func (x *Integer) IsNeg() bool {
return x.sign && !x.mant.IsZero()
}
// IsPos returns true iff x >= 0.
//
func (x *Integer) IsPos() bool {
return !x.sign && !x.mant.IsZero()
}
// Operations
// Neg returns the negated value of x.
//
func (x *Integer) Neg() *Integer {
return MakeInt(!x.sign, x.mant);
}
// Add returns the sum x + y.
//
func (x *Integer) Add(y *Integer) *Integer {
var z *Integer;
if x.sign == y.sign {
// x + y == x + y
// (-x) + (-y) == -(x + y)
z = MakeInt(x.sign, x.mant.Add(y.mant));
} else {
// x + (-y) == x - y == -(y - x)
// (-x) + y == y - x == -(x - y)
if x.mant.Cmp(y.mant) >= 0 {
z = MakeInt(false, x.mant.Sub(y.mant));
} else {
z = MakeInt(true, y.mant.Sub(x.mant));
}
}
if x.sign {
z.sign = !z.sign;
}
return z;
}
// Sub returns the difference x - y.
//
func (x *Integer) Sub(y *Integer) *Integer {
var z *Integer;
if x.sign != y.sign {
// x - (-y) == x + y
// (-x) - y == -(x + y)
z = MakeInt(false, x.mant.Add(y.mant));
} else {
// x - y == x - y == -(y - x)
// (-x) - (-y) == y - x == -(x - y)
if x.mant.Cmp(y.mant) >= 0 {
z = MakeInt(false, x.mant.Sub(y.mant));
} else {
z = MakeInt(true, y.mant.Sub(x.mant));
}
}
if x.sign {
z.sign = !z.sign;
}
return z;
}
// Mul returns the product x * y.
//
func (x *Integer) Mul(y *Integer) *Integer {
// x * y == x * y
// x * (-y) == -(x * y)
// (-x) * y == -(x * y)
// (-x) * (-y) == x * y
return MakeInt(x.sign != y.sign, x.mant.Mul(y.mant));
}
// MulNat returns the product x * y, where y is a (unsigned) natural number.
//
func (x *Integer) MulNat(y Natural) *Integer {
// x * y == x * y
// (-x) * y == -(x * y)
return MakeInt(x.sign, x.mant.Mul(y));
}
// Quo returns the quotient q = x / y for y != 0.
// If y == 0, a division-by-zero run-time error occurs.
//
// Quo and Rem implement T-division and modulus (like C99):
//
// q = x.Quo(y) = trunc(x/y) (truncation towards zero)
// r = x.Rem(y) = x - y*q
//
// (Daan Leijen, "Division and Modulus for Computer Scientists".)
//
func (x *Integer) Quo(y *Integer) *Integer {
// x / y == x / y
// x / (-y) == -(x / y)
// (-x) / y == -(x / y)
// (-x) / (-y) == x / y
return MakeInt(x.sign != y.sign, x.mant.Div(y.mant));
}
// Rem returns the remainder r of the division x / y for y != 0,
// with r = x - y*x.Quo(y). Unless r is zero, its sign corresponds
// to the sign of x.
// If y == 0, a division-by-zero run-time error occurs.
//
func (x *Integer) Rem(y *Integer) *Integer {
// x % y == x % y
// x % (-y) == x % y
// (-x) % y == -(x % y)
// (-x) % (-y) == -(x % y)
return MakeInt(x.sign, x.mant.Mod(y.mant));
}
// QuoRem returns the pair (x.Quo(y), x.Rem(y)) for y != 0.
// If y == 0, a division-by-zero run-time error occurs.
//
func (x *Integer) QuoRem(y *Integer) (*Integer, *Integer) {
q, r := x.mant.DivMod(y.mant);
return MakeInt(x.sign != y.sign, q), MakeInt(x.sign, r);
}
// Div returns the quotient q = x / y for y != 0.
// If y == 0, a division-by-zero run-time error occurs.
//
// Div and Mod implement Euclidian division and modulus:
//
// q = x.Div(y)
// r = x.Mod(y) with: 0 <= r < |q| and: y = x*q + r
//
// (Raymond T. Boute, The Euclidian definition of the functions
// div and mod. "ACM Transactions on Programming Languages and
// Systems (TOPLAS)", 14(2):127-144, New York, NY, USA, 4/1992.
// ACM press.)
//
func (x *Integer) Div(y *Integer) *Integer {
q, r := x.QuoRem(y);
if r.IsNeg() {
if y.IsPos() {
q = q.Sub(Int(1));
} else {
q = q.Add(Int(1));
}
}
return q;
}
// Mod returns the modulus r of the division x / y for y != 0,
// with r = x - y*x.Div(y). r is always positive.
// If y == 0, a division-by-zero run-time error occurs.
//
func (x *Integer) Mod(y *Integer) *Integer {
r := x.Rem(y);
if r.IsNeg() {
if y.IsPos() {
r = r.Add(y);
} else {
r = r.Sub(y);
}
}
return r;
}
// DivMod returns the pair (x.Div(y), x.Mod(y)).
//
func (x *Integer) DivMod(y *Integer) (*Integer, *Integer) {
q, r := x.QuoRem(y);
if r.IsNeg() {
if y.IsPos() {
q = q.Sub(Int(1));
r = r.Add(y);
} else {
q = q.Add(Int(1));
r = r.Sub(y);
}
}
return q, r;
}
// Shl implements "shift left" x << s. It returns x * 2^s.
//
func (x *Integer) Shl(s uint) *Integer {
return MakeInt(x.sign, x.mant.Shl(s));
}
// Shr implements "shift right" x >> s. It returns x / 2^s.
// Implementation restriction: Shl is not yet implemented for negative x.
//
func (x *Integer) Shr(s uint) *Integer {
z := MakeInt(x.sign, x.mant.Shr(s));
if x.IsNeg() {
panic("UNIMPLEMENTED Integer.Shr of negative values");
}
return z;
}
// And returns the "bitwise and" x & y for the binary representation of x and y.
// Implementation restriction: And is not implemented for negative x.
//
func (x *Integer) And(y *Integer) *Integer {
var z *Integer;
if !x.sign && !y.sign {
z = MakeInt(false, x.mant.And(y.mant));
} else {
panic("UNIMPLEMENTED Integer.And of negative values");
}
return z;
}
// Or returns the "bitwise or" x | y for the binary representation of x and y.
// Implementation restriction: Or is not implemented for negative x.
//
func (x *Integer) Or(y *Integer) *Integer {
var z *Integer;
if !x.sign && !y.sign {
z = MakeInt(false, x.mant.Or(y.mant));
} else {
panic("UNIMPLEMENTED Integer.Or of negative values");
}
return z;
}
// Xor returns the "bitwise xor" x | y for the binary representation of x and y.
// Implementation restriction: Xor is not implemented for negative integers.
//
func (x *Integer) Xor(y *Integer) *Integer {
var z *Integer;
if !x.sign && !y.sign {
z = MakeInt(false, x.mant.Xor(y.mant));
} else {
panic("UNIMPLEMENTED Integer.Xor of negative values");
}
return z;
}
// Cmp compares x and y. The result is an int value
//
// < 0 if x < y
// == 0 if x == y
// > 0 if x > y
//
func (x *Integer) Cmp(y *Integer) int {
// x cmp y == x cmp y
// x cmp (-y) == x
// (-x) cmp y == y
// (-x) cmp (-y) == -(x cmp y)
var r int;
switch {
case x.sign == y.sign:
r = x.mant.Cmp(y.mant);
if x.sign {
r = -r;
}
case x.sign: r = -1;
case y.sign: r = 1;
}
return r;
}
// ToString converts x to a string for a given base, with 2 <= base <= 16.
//
func (x *Integer) ToString(base uint) string {
if x.mant.IsZero() {
return "0";
}
var s string;
if x.sign {
s = "-";
}
return s + x.mant.ToString(base);
}
// String converts x to its decimal string representation.
// x.String() is the same as x.ToString(10).
//
func (x *Integer) String() string {
return x.ToString(10);
}
// Format is a support routine for fmt.Formatter. It accepts
// the formats 'b' (binary), 'o' (octal), and 'x' (hexadecimal).
//
func (x *Integer) Format(h fmt.Formatter, c int) {
fmt.Fprintf(h, "%s", x.ToString(fmtbase(c)));
}
// IntFromString returns the integer corresponding to the
// longest possible prefix of s representing an integer in a
// given conversion base.
//
// If the base argument is 0, the string prefix determines the actual
// conversion base. A prefix of "0x" or "0X" selects base 16; the "0"
// prefix selects base 8. Otherwise the selected base is 10.
//
// If a non-nil slen argument is provided, *slen is set to the length
// of the string prefix converted.
//
func IntFromString(s string, base uint, slen *int) (*Integer, uint) {
// get sign, if any
sign := false;
if len(s) > 0 && (s[0] == '-' || s[0] == '+') {
sign = s[0] == '-';
s = s[1 : len(s)];
}
var mant Natural;
mant, base = NatFromString(s, base, slen);
// correct slen if necessary
if slen != nil && sign {
*slen++;
}
return MakeInt(sign, mant), base;
}
// ----------------------------------------------------------------------------
// Rational numbers
// Rational represents a quotient a/b of arbitrary precision.
//
type Rational struct {
a *Integer; // numerator
b Natural; // denominator
}
// MakeRat makes a rational number given a numerator a and a denominator b.
//
func MakeRat(a *Integer, b Natural) *Rational {
f := a.mant.Gcd(b); // f > 0
if f.Cmp(Nat(1)) != 0 {
a = MakeInt(a.sign, a.mant.Div(f));
b = b.Div(f);
}
return &Rational{a, b};
}
// Rat creates a "small" rational number with value a0/b0.
// Implementation restriction: At the moment, only values a0, b0
// with an absolute value |a0|, |b0| < (1<<60) are supported.
//
func Rat(a0 int, b0 int) *Rational {
a, b := Int(a0), Int(b0);
if b.sign {
a = a.Neg();
}
return MakeRat(a, b.mant);
}
// Predicates
// IsZero returns true iff x == 0.
//
func (x *Rational) IsZero() bool {
return x.a.IsZero();
}
// IsNeg returns true iff x < 0.
//
func (x *Rational) IsNeg() bool {
return x.a.IsNeg();
}
// IsPos returns true iff x > 0.
//
func (x *Rational) IsPos() bool {
return x.a.IsPos();
}
// IsInt returns true iff x can be written with a denominator 1
// in the form x == x'/1; i.e., if x is an integer value.
//
func (x *Rational) IsInt() bool {
return x.b.Cmp(Nat(1)) == 0;
}
// Operations
// Neg returns the negated value of x.
//
func (x *Rational) Neg() *Rational {
return MakeRat(x.a.Neg(), x.b);
}
// Add returns the sum x + y.
//
func (x *Rational) Add(y *Rational) *Rational {
return MakeRat((x.a.MulNat(y.b)).Add(y.a.MulNat(x.b)), x.b.Mul(y.b));
}
// Sub returns the difference x - y.
//
func (x *Rational) Sub(y *Rational) *Rational {
return MakeRat((x.a.MulNat(y.b)).Sub(y.a.MulNat(x.b)), x.b.Mul(y.b));
}
// Mul returns the product x * y.
//
func (x *Rational) Mul(y *Rational) *Rational {
return MakeRat(x.a.Mul(y.a), x.b.Mul(y.b));
}
// Quo returns the quotient x / y for y != 0.
// If y == 0, a division-by-zero run-time error occurs.
//
func (x *Rational) Quo(y *Rational) *Rational {
a := x.a.MulNat(y.b);
b := y.a.MulNat(x.b);
if b.IsNeg() {
a = a.Neg();
}
return MakeRat(a, b.mant);
}
// Cmp compares x and y. The result is an int value
//
// < 0 if x < y
// == 0 if x == y
// > 0 if x > y
//
func (x *Rational) Cmp(y *Rational) int {
return (x.a.MulNat(y.b)).Cmp(y.a.MulNat(x.b));
}
// ToString converts x to a string for a given base, with 2 <= base <= 16.
// The string representation is of the form "numerator/denominator".
//
func (x *Rational) ToString(base uint) string {
s := x.a.ToString(base);
if !x.IsInt() {
s += "/" + x.b.ToString(base);
}
return s;
}
// String converts x to its decimal string representation.
// x.String() is the same as x.ToString(10).
//
func (x *Rational) String() string {
return x.ToString(10);
}
// Format is a support routine for fmt.Formatter. It accepts
// the formats 'b' (binary), 'o' (octal), and 'x' (hexadecimal).
//
func (x *Rational) Format(h fmt.Formatter, c int) {
fmt.Fprintf(h, "%s", x.ToString(fmtbase(c)));
}
// RatFromString returns the rational number corresponding to the
// longest possible prefix of s representing a rational number in a
// given conversion base.
//
// If the base argument is 0, the string prefix determines the actual
// conversion base. A prefix of "0x" or "0X" selects base 16; the "0"
// prefix selects base 8. Otherwise the selected base is 10.
//
// If a non-nil slen argument is provided, *slen is set to the length
// of the string prefix converted.
//
func RatFromString(s string, base uint, slen *int) (*Rational, uint) {
// read nominator
var alen, blen int;
a, abase := IntFromString(s, base, &alen);
b := Nat(1);
// read denominator or fraction, if any
if alen < len(s) {
ch := s[alen];
if ch == '/' {
alen++;
b, base = NatFromString(s[alen : len(s)], base, &blen);
} else if ch == '.' {
alen++;
b, base = NatFromString(s[alen : len(s)], abase, &blen);
assert(base == abase);
f := Nat(base).Pow(uint(blen));
a = MakeInt(a.sign, a.mant.Mul(f).Add(b));
b = f;
}
}
// provide number of string bytes consumed if necessary
if slen != nil {
*slen = alen + blen;
}
return MakeRat(a, b), abase;
}