1
0
mirror of https://github.com/golang/go synced 2024-11-18 17:04:41 -07:00
go/cmd/benchcmp/benchcmp.go
Russ Cox 222283a9c8 go.tools/cmd/benchcmp: add -best flag
If you have multiple runs in old.txt and new.txt
the default behavior is to match them up pairwise
and compare successive pairs (and if you have a
different number of runs in each file, benchcmp
refuses to do anything).

The new -best flag changes the behavior to instead
compare the fastest run of each benchmark from
the two files. This makes sense if you believe that
the fastest speed is the 'actual' speed and the slower
results are due to the computer spending time doing
non-benchmark work while the benchmark was
running.

LGTM=josharian
R=golang-codereviews, josharian
CC=golang-codereviews
https://golang.org/cl/102890047
2014-05-30 21:45:27 -04:00

162 lines
3.6 KiB
Go

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"flag"
"fmt"
"os"
"sort"
"strconv"
"text/tabwriter"
)
var (
changedOnly = flag.Bool("changed", false, "show only benchmarks that have changed")
magSort = flag.Bool("mag", false, "sort benchmarks by magnitude of change")
best = flag.Bool("best", false, "compare best times from old and new")
)
const usageFooter = `
Each input file should be from:
go test -test.run=NONE -test.bench=. > [old,new].txt
Benchcmp compares old and new for each benchmark.
If -test.benchmem=true is added to the "go test" command
benchcmp will also compare memory allocations.
`
func main() {
flag.Usage = func() {
fmt.Fprintf(os.Stderr, "usage: %s old.txt new.txt\n\n", os.Args[0])
flag.PrintDefaults()
fmt.Fprint(os.Stderr, usageFooter)
os.Exit(2)
}
flag.Parse()
if flag.NArg() != 2 {
flag.Usage()
}
before := parseFile(flag.Arg(0))
after := parseFile(flag.Arg(1))
cmps, warnings := Correlate(before, after)
for _, warn := range warnings {
fmt.Fprintln(os.Stderr, warn)
}
if len(cmps) == 0 {
fatal("benchcmp: no repeated benchmarks")
}
w := new(tabwriter.Writer)
w.Init(os.Stdout, 0, 0, 5, ' ', 0)
defer w.Flush()
var header bool // Has the header has been displayed yet for a given block?
if *magSort {
sort.Sort(ByDeltaNsOp(cmps))
} else {
sort.Sort(ByParseOrder(cmps))
}
for _, cmp := range cmps {
if !cmp.Measured(NsOp) {
continue
}
if delta := cmp.DeltaNsOp(); !*changedOnly || delta.Changed() {
if !header {
fmt.Fprintf(w, "benchmark\told ns/op\tnew ns/op\tdelta\t\n")
header = true
}
fmt.Fprintf(w, "%s\t%s\t%s\t%s\t\n", cmp.Name(), formatNs(cmp.Before.NsOp), formatNs(cmp.After.NsOp), delta.Percent())
}
}
header = false
if *magSort {
sort.Sort(ByDeltaMbS(cmps))
}
for _, cmp := range cmps {
if !cmp.Measured(MbS) {
continue
}
if delta := cmp.DeltaMbS(); !*changedOnly || delta.Changed() {
if !header {
fmt.Fprintf(w, "\nbenchmark\told MB/s\tnew MB/s\tspeedup\t\n")
header = true
}
fmt.Fprintf(w, "%s\t%.2f\t%.2f\t%s\t\n", cmp.Name(), cmp.Before.MbS, cmp.After.MbS, delta.Multiple())
}
}
header = false
if *magSort {
sort.Sort(ByDeltaAllocsOp(cmps))
}
for _, cmp := range cmps {
if !cmp.Measured(AllocsOp) {
continue
}
if delta := cmp.DeltaAllocsOp(); !*changedOnly || delta.Changed() {
if !header {
fmt.Fprintf(w, "\nbenchmark\told allocs\tnew allocs\tdelta\t\n")
header = true
}
fmt.Fprintf(w, "%s\t%d\t%d\t%s\t\n", cmp.Name(), cmp.Before.AllocsOp, cmp.After.AllocsOp, delta.Percent())
}
}
header = false
if *magSort {
sort.Sort(ByDeltaBOp(cmps))
}
for _, cmp := range cmps {
if !cmp.Measured(BOp) {
continue
}
if delta := cmp.DeltaBOp(); !*changedOnly || delta.Changed() {
if !header {
fmt.Fprintf(w, "\nbenchmark\told bytes\tnew bytes\tdelta\t\n")
header = true
}
fmt.Fprintf(w, "%s\t%d\t%d\t%s\t\n", cmp.Name(), cmp.Before.BOp, cmp.After.BOp, cmp.DeltaBOp().Percent())
}
}
}
func fatal(msg interface{}) {
fmt.Fprintln(os.Stderr, msg)
os.Exit(1)
}
func parseFile(path string) BenchSet {
f, err := os.Open(path)
if err != nil {
fatal(err)
}
bb, err := ParseBenchSet(f)
if err != nil {
fatal(err)
}
return bb
}
// formatNs formats ns measurements to expose a useful amount of
// precision. It mirrors the ns precision logic of testing.B.
func formatNs(ns float64) string {
prec := 0
switch {
case ns < 10:
prec = 2
case ns < 100:
prec = 1
}
return strconv.FormatFloat(ns, 'f', prec, 64)
}