1
0
mirror of https://github.com/golang/go synced 2024-11-14 15:00:27 -07:00
go/src/runtime/mbarrier.go
Dmitry Vyukov ed8cc5cf9b runtime: fix race instrumentation of append
typedslicecopy is another write barrier that is not
understood by racewalk. It seems quite complex to handle it
in the compiler, so instead just instrument it in runtime.

Update #9796

Change-Id: I0eb6abf3a2cd2491a338fab5f7da22f01bf7e89b
Reviewed-on: https://go-review.googlesource.com/4370
Reviewed-by: Russ Cox <rsc@golang.org>
2015-02-12 08:51:49 +00:00

503 lines
15 KiB
Go

// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Garbage collector: write barriers.
//
// For the concurrent garbage collector, the Go compiler implements
// updates to pointer-valued fields that may be in heap objects by
// emitting calls to write barriers. This file contains the actual write barrier
// implementation, markwb, and the various wrappers called by the
// compiler to implement pointer assignment, slice assignment,
// typed memmove, and so on.
//
// To check for missed write barriers, the GODEBUG=wbshadow debugging
// mode allocates a second copy of the heap. Write barrier-based pointer
// updates make changes to both the real heap and the shadow, and both
// the pointer updates and the GC look for inconsistencies between the two,
// indicating pointer writes that bypassed the barrier.
package runtime
import "unsafe"
// markwb is the mark-phase write barrier, the only barrier we have.
// The rest of this file exists only to make calls to this function.
//
// This is the Dijkstra barrier coarsened to always shade the ptr (dst) object.
// The original Dijkstra barrier only shaded ptrs being placed in black slots.
//
// Shade indicates that it has seen a white pointer by adding the referent
// to wbuf as well as marking it.
//
// slot is the destination (dst) in go code
// ptr is the value that goes into the slot (src) in the go code
//
// Dijkstra pointed out that maintaining the no black to white
// pointers means that white to white pointers not need
// to be noted by the write barrier. Furthermore if either
// white object dies before it is reached by the
// GC then the object can be collected during this GC cycle
// instead of waiting for the next cycle. Unfortunately the cost of
// ensure that the object holding the slot doesn't concurrently
// change to black without the mutator noticing seems prohibitive.
//
// Consider the following example where the mutator writes into
// a slot and then loads the slot's mark bit while the GC thread
// writes to the slot's mark bit and then as part of scanning reads
// the slot.
//
// Initially both [slot] and [slotmark] are 0 (nil)
// Mutator thread GC thread
// st [slot], ptr st [slotmark], 1
//
// ld r1, [slotmark] ld r2, [slot]
//
// This is a classic example of independent reads of independent writes,
// aka IRIW. The question is if r1==r2==0 is allowed and for most HW the
// answer is yes without inserting a memory barriers between the st and the ld.
// These barriers are expensive so we have decided that we will
// always grey the ptr object regardless of the slot's color.
//go:nowritebarrier
func gcmarkwb_m(slot *uintptr, ptr uintptr) {
switch gcphase {
default:
throw("gcphasework in bad gcphase")
case _GCoff, _GCquiesce, _GCstw, _GCsweep, _GCscan:
// ok
case _GCmark, _GCmarktermination:
if ptr != 0 && inheap(ptr) {
shade(ptr)
}
}
}
// needwb reports whether a write barrier is needed now
// (otherwise the write can be made directly).
//go:nosplit
func needwb() bool {
return gcphase == _GCmark || gcphase == _GCmarktermination || mheap_.shadow_enabled
}
//go:nosplit
func writebarrierptr_nostore1(dst *uintptr, src uintptr) {
mp := acquirem()
if mp.inwb || mp.dying > 0 {
releasem(mp)
return
}
mp.inwb = true
systemstack(func() {
gcmarkwb_m(dst, src)
})
mp.inwb = false
releasem(mp)
}
// NOTE: Really dst *unsafe.Pointer, src unsafe.Pointer,
// but if we do that, Go inserts a write barrier on *dst = src.
//go:nosplit
func writebarrierptr(dst *uintptr, src uintptr) {
if !needwb() {
*dst = src
return
}
if src != 0 && (src < _PhysPageSize || src == poisonStack) {
systemstack(func() { throw("bad pointer in write barrier") })
}
if mheap_.shadow_enabled {
writebarrierptr_shadow(dst, src)
}
*dst = src
writebarrierptr_nostore1(dst, src)
}
//go:nosplit
func writebarrierptr_shadow(dst *uintptr, src uintptr) {
systemstack(func() {
addr := uintptr(unsafe.Pointer(dst))
shadow := shadowptr(addr)
if shadow == nil {
return
}
// There is a race here but only if the program is using
// racy writes instead of sync/atomic. In that case we
// don't mind crashing.
if *shadow != *dst && *shadow != noShadow && istrackedptr(*dst) {
mheap_.shadow_enabled = false
print("runtime: write barrier dst=", dst, " old=", hex(*dst), " shadow=", shadow, " old=", hex(*shadow), " new=", hex(src), "\n")
throw("missed write barrier")
}
*shadow = src
})
}
// Like writebarrierptr, but the store has already been applied.
// Do not reapply.
//go:nosplit
func writebarrierptr_nostore(dst *uintptr, src uintptr) {
if !needwb() {
return
}
if src != 0 && (src < _PhysPageSize || src == poisonStack) {
systemstack(func() { throw("bad pointer in write barrier") })
}
// Apply changes to shadow.
// Since *dst has been overwritten already, we cannot check
// whether there were any missed updates, but writebarrierptr_nostore
// is only rarely used.
if mheap_.shadow_enabled {
systemstack(func() {
addr := uintptr(unsafe.Pointer(dst))
shadow := shadowptr(addr)
if shadow == nil {
return
}
*shadow = src
})
}
writebarrierptr_nostore1(dst, src)
}
// writebarrierptr_noshadow records that the value in *dst
// has been written to using an atomic operation and the shadow
// has not been updated. (In general if dst must be manipulated
// atomically we cannot get the right bits for use in the shadow.)
//go:nosplit
func writebarrierptr_noshadow(dst *uintptr) {
addr := uintptr(unsafe.Pointer(dst))
shadow := shadowptr(addr)
if shadow == nil {
return
}
*shadow = noShadow
}
//go:nosplit
func writebarrierstring(dst *[2]uintptr, src [2]uintptr) {
writebarrierptr(&dst[0], src[0])
dst[1] = src[1]
}
//go:nosplit
func writebarrierslice(dst *[3]uintptr, src [3]uintptr) {
writebarrierptr(&dst[0], src[0])
dst[1] = src[1]
dst[2] = src[2]
}
//go:nosplit
func writebarrieriface(dst *[2]uintptr, src [2]uintptr) {
writebarrierptr(&dst[0], src[0])
writebarrierptr(&dst[1], src[1])
}
//go:generate go run wbfat_gen.go -- wbfat.go
//
// The above line generates multiword write barriers for
// all the combinations of ptr+scalar up to four words.
// The implementations are written to wbfat.go.
// typedmemmove copies a value of type t to dst from src.
//go:nosplit
func typedmemmove(typ *_type, dst, src unsafe.Pointer) {
if !needwb() || (typ.kind&kindNoPointers) != 0 {
memmove(dst, src, typ.size)
return
}
systemstack(func() {
mask := typeBitmapInHeapBitmapFormat(typ)
nptr := typ.size / ptrSize
for i := uintptr(0); i < nptr; i += 2 {
bits := mask[i/2]
if (bits>>2)&typeMask == typePointer {
writebarrierptr((*uintptr)(dst), *(*uintptr)(src))
} else {
*(*uintptr)(dst) = *(*uintptr)(src)
}
// TODO(rsc): The noescape calls should be unnecessary.
dst = add(noescape(dst), ptrSize)
src = add(noescape(src), ptrSize)
if i+1 == nptr {
break
}
bits >>= 4
if (bits>>2)&typeMask == typePointer {
writebarrierptr((*uintptr)(dst), *(*uintptr)(src))
} else {
*(*uintptr)(dst) = *(*uintptr)(src)
}
dst = add(noescape(dst), ptrSize)
src = add(noescape(src), ptrSize)
}
})
}
//go:linkname reflect_typedmemmove reflect.typedmemmove
func reflect_typedmemmove(typ *_type, dst, src unsafe.Pointer) {
typedmemmove(typ, dst, src)
}
// typedmemmovepartial is like typedmemmove but assumes that
// dst and src point off bytes into the value and only copies size bytes.
//go:linkname reflect_typedmemmovepartial reflect.typedmemmovepartial
func reflect_typedmemmovepartial(typ *_type, dst, src unsafe.Pointer, off, size uintptr) {
if !needwb() || (typ.kind&kindNoPointers) != 0 || size < ptrSize {
memmove(dst, src, size)
return
}
if off&(ptrSize-1) != 0 {
frag := -off & (ptrSize - 1)
// frag < size, because size >= ptrSize, checked above.
memmove(dst, src, frag)
size -= frag
dst = add(noescape(dst), frag)
src = add(noescape(src), frag)
off += frag
}
mask := typeBitmapInHeapBitmapFormat(typ)
nptr := (off + size) / ptrSize
for i := uintptr(off / ptrSize); i < nptr; i++ {
bits := mask[i/2] >> ((i & 1) << 2)
if (bits>>2)&typeMask == typePointer {
writebarrierptr((*uintptr)(dst), *(*uintptr)(src))
} else {
*(*uintptr)(dst) = *(*uintptr)(src)
}
// TODO(rsc): The noescape calls should be unnecessary.
dst = add(noescape(dst), ptrSize)
src = add(noescape(src), ptrSize)
}
size &= ptrSize - 1
if size > 0 {
memmove(dst, src, size)
}
}
// callwritebarrier is invoked at the end of reflectcall, to execute
// write barrier operations to record the fact that a call's return
// values have just been copied to frame, starting at retoffset
// and continuing to framesize. The entire frame (not just the return
// values) is described by typ. Because the copy has already
// happened, we call writebarrierptr_nostore, and we must be careful
// not to be preempted before the write barriers have been run.
//go:nosplit
func callwritebarrier(typ *_type, frame unsafe.Pointer, framesize, retoffset uintptr) {
if !needwb() || typ == nil || (typ.kind&kindNoPointers) != 0 || framesize-retoffset < ptrSize {
return
}
systemstack(func() {
mask := typeBitmapInHeapBitmapFormat(typ)
// retoffset is known to be pointer-aligned (at least).
// TODO(rsc): The noescape call should be unnecessary.
dst := add(noescape(frame), retoffset)
nptr := framesize / ptrSize
for i := uintptr(retoffset / ptrSize); i < nptr; i++ {
bits := mask[i/2] >> ((i & 1) << 2)
if (bits>>2)&typeMask == typePointer {
writebarrierptr_nostore((*uintptr)(dst), *(*uintptr)(dst))
}
// TODO(rsc): The noescape call should be unnecessary.
dst = add(noescape(dst), ptrSize)
}
})
}
//go:nosplit
func typedslicecopy(typ *_type, dst, src slice) int {
n := dst.len
if n > src.len {
n = src.len
}
if n == 0 {
return 0
}
dstp := unsafe.Pointer(dst.array)
srcp := unsafe.Pointer(src.array)
if raceenabled {
callerpc := getcallerpc(unsafe.Pointer(&typ))
pc := funcPC(slicecopy)
racewriterangepc(dstp, uintptr(n)*typ.size, callerpc, pc)
racereadrangepc(srcp, uintptr(n)*typ.size, callerpc, pc)
}
if !needwb() {
memmove(dstp, srcp, uintptr(n)*typ.size)
return int(n)
}
systemstack(func() {
if uintptr(srcp) < uintptr(dstp) && uintptr(srcp)+uintptr(n)*typ.size > uintptr(dstp) {
// Overlap with src before dst.
// Copy backward, being careful not to move dstp/srcp
// out of the array they point into.
dstp = add(dstp, uintptr(n-1)*typ.size)
srcp = add(srcp, uintptr(n-1)*typ.size)
i := uint(0)
for {
typedmemmove(typ, dstp, srcp)
if i++; i >= n {
break
}
dstp = add(dstp, -typ.size)
srcp = add(srcp, -typ.size)
}
} else {
// Copy forward, being careful not to move dstp/srcp
// out of the array they point into.
i := uint(0)
for {
typedmemmove(typ, dstp, srcp)
if i++; i >= n {
break
}
dstp = add(dstp, typ.size)
srcp = add(srcp, typ.size)
}
}
})
return int(n)
}
//go:linkname reflect_typedslicecopy reflect.typedslicecopy
func reflect_typedslicecopy(elemType *_type, dst, src slice) int {
return typedslicecopy(elemType, dst, src)
}
// Shadow heap for detecting missed write barriers.
// noShadow is stored in as the shadow pointer to mark that there is no
// shadow word recorded. It matches any actual pointer word.
// noShadow is used when it is impossible to know the right word
// to store in the shadow heap, such as when the real heap word
// is being manipulated atomically.
const noShadow uintptr = 1
func wbshadowinit() {
// Initialize write barrier shadow heap if we were asked for it
// and we have enough address space (not on 32-bit).
if debug.wbshadow == 0 {
return
}
if ptrSize != 8 {
print("runtime: GODEBUG=wbshadow=1 disabled on 32-bit system\n")
return
}
var reserved bool
p1 := sysReserveHigh(mheap_.arena_end-mheap_.arena_start, &reserved)
if p1 == nil {
throw("cannot map shadow heap")
}
mheap_.shadow_heap = uintptr(p1) - mheap_.arena_start
sysMap(p1, mheap_.arena_used-mheap_.arena_start, reserved, &memstats.other_sys)
memmove(p1, unsafe.Pointer(mheap_.arena_start), mheap_.arena_used-mheap_.arena_start)
mheap_.shadow_reserved = reserved
start := ^uintptr(0)
end := uintptr(0)
if start > uintptr(unsafe.Pointer(&noptrdata)) {
start = uintptr(unsafe.Pointer(&noptrdata))
}
if start > uintptr(unsafe.Pointer(&data)) {
start = uintptr(unsafe.Pointer(&data))
}
if start > uintptr(unsafe.Pointer(&noptrbss)) {
start = uintptr(unsafe.Pointer(&noptrbss))
}
if start > uintptr(unsafe.Pointer(&bss)) {
start = uintptr(unsafe.Pointer(&bss))
}
if end < uintptr(unsafe.Pointer(&enoptrdata)) {
end = uintptr(unsafe.Pointer(&enoptrdata))
}
if end < uintptr(unsafe.Pointer(&edata)) {
end = uintptr(unsafe.Pointer(&edata))
}
if end < uintptr(unsafe.Pointer(&enoptrbss)) {
end = uintptr(unsafe.Pointer(&enoptrbss))
}
if end < uintptr(unsafe.Pointer(&ebss)) {
end = uintptr(unsafe.Pointer(&ebss))
}
start &^= _PhysPageSize - 1
end = round(end, _PhysPageSize)
mheap_.data_start = start
mheap_.data_end = end
reserved = false
p1 = sysReserveHigh(end-start, &reserved)
if p1 == nil {
throw("cannot map shadow data")
}
mheap_.shadow_data = uintptr(p1) - start
sysMap(p1, end-start, reserved, &memstats.other_sys)
memmove(p1, unsafe.Pointer(start), end-start)
mheap_.shadow_enabled = true
}
// shadowptr returns a pointer to the shadow value for addr.
//go:nosplit
func shadowptr(addr uintptr) *uintptr {
var shadow *uintptr
if mheap_.data_start <= addr && addr < mheap_.data_end {
shadow = (*uintptr)(unsafe.Pointer(addr + mheap_.shadow_data))
} else if inheap(addr) {
shadow = (*uintptr)(unsafe.Pointer(addr + mheap_.shadow_heap))
}
return shadow
}
// istrackedptr reports whether the pointer value p requires a write barrier
// when stored into the heap.
func istrackedptr(p uintptr) bool {
return inheap(p)
}
// checkwbshadow checks that p matches its shadow word.
// The garbage collector calls checkwbshadow for each pointer during the checkmark phase.
// It is only called when mheap_.shadow_enabled is true.
func checkwbshadow(p *uintptr) {
addr := uintptr(unsafe.Pointer(p))
shadow := shadowptr(addr)
if shadow == nil {
return
}
// There is no race on the accesses here, because the world is stopped,
// but there may be racy writes that lead to the shadow and the
// heap being inconsistent. If so, we will detect that here as a
// missed write barrier and crash. We don't mind.
// Code should use sync/atomic instead of racy pointer writes.
if *shadow != *p && *shadow != noShadow && istrackedptr(*p) {
mheap_.shadow_enabled = false
print("runtime: checkwritebarrier p=", p, " *p=", hex(*p), " shadow=", shadow, " *shadow=", hex(*shadow), "\n")
throw("missed write barrier")
}
}
// clearshadow clears the shadow copy associated with the n bytes of memory at addr.
func clearshadow(addr, n uintptr) {
if !mheap_.shadow_enabled {
return
}
p := shadowptr(addr)
if p == nil || n <= ptrSize {
return
}
memclr(unsafe.Pointer(p), n)
}