mirror of
https://github.com/golang/go
synced 2024-11-07 15:06:16 -07:00
e0215315f5
This change adds support for the new register ABI on amd64 to reflect.(Value).Call. If internal/abi's register counts are non-zero, reflect will try to set up arguments in registers on the Call path. Note that because the register ABI becomes ABI0 with zero registers available, this should keep working as it did before. This change does not add any tests for the register ABI case because there's no way to do so at the moment. For #40724. Change-Id: I8aa089a5aa5a31b72e56b3d9388dd3f82203985b Reviewed-on: https://go-review.googlesource.com/c/go/+/272568 Trust: Michael Knyszek <mknyszek@google.com> Run-TryBot: Michael Knyszek <mknyszek@google.com> TryBot-Result: Go Bot <gobot@golang.org> Reviewed-by: Cherry Zhang <cherryyz@google.com> Reviewed-by: Than McIntosh <thanm@google.com>
336 lines
12 KiB
Go
336 lines
12 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Garbage collector: write barriers.
|
|
//
|
|
// For the concurrent garbage collector, the Go compiler implements
|
|
// updates to pointer-valued fields that may be in heap objects by
|
|
// emitting calls to write barriers. The main write barrier for
|
|
// individual pointer writes is gcWriteBarrier and is implemented in
|
|
// assembly. This file contains write barrier entry points for bulk
|
|
// operations. See also mwbbuf.go.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"internal/abi"
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
// Go uses a hybrid barrier that combines a Yuasa-style deletion
|
|
// barrier—which shades the object whose reference is being
|
|
// overwritten—with Dijkstra insertion barrier—which shades the object
|
|
// whose reference is being written. The insertion part of the barrier
|
|
// is necessary while the calling goroutine's stack is grey. In
|
|
// pseudocode, the barrier is:
|
|
//
|
|
// writePointer(slot, ptr):
|
|
// shade(*slot)
|
|
// if current stack is grey:
|
|
// shade(ptr)
|
|
// *slot = ptr
|
|
//
|
|
// slot is the destination in Go code.
|
|
// ptr is the value that goes into the slot in Go code.
|
|
//
|
|
// Shade indicates that it has seen a white pointer by adding the referent
|
|
// to wbuf as well as marking it.
|
|
//
|
|
// The two shades and the condition work together to prevent a mutator
|
|
// from hiding an object from the garbage collector:
|
|
//
|
|
// 1. shade(*slot) prevents a mutator from hiding an object by moving
|
|
// the sole pointer to it from the heap to its stack. If it attempts
|
|
// to unlink an object from the heap, this will shade it.
|
|
//
|
|
// 2. shade(ptr) prevents a mutator from hiding an object by moving
|
|
// the sole pointer to it from its stack into a black object in the
|
|
// heap. If it attempts to install the pointer into a black object,
|
|
// this will shade it.
|
|
//
|
|
// 3. Once a goroutine's stack is black, the shade(ptr) becomes
|
|
// unnecessary. shade(ptr) prevents hiding an object by moving it from
|
|
// the stack to the heap, but this requires first having a pointer
|
|
// hidden on the stack. Immediately after a stack is scanned, it only
|
|
// points to shaded objects, so it's not hiding anything, and the
|
|
// shade(*slot) prevents it from hiding any other pointers on its
|
|
// stack.
|
|
//
|
|
// For a detailed description of this barrier and proof of
|
|
// correctness, see https://github.com/golang/proposal/blob/master/design/17503-eliminate-rescan.md
|
|
//
|
|
//
|
|
//
|
|
// Dealing with memory ordering:
|
|
//
|
|
// Both the Yuasa and Dijkstra barriers can be made conditional on the
|
|
// color of the object containing the slot. We chose not to make these
|
|
// conditional because the cost of ensuring that the object holding
|
|
// the slot doesn't concurrently change color without the mutator
|
|
// noticing seems prohibitive.
|
|
//
|
|
// Consider the following example where the mutator writes into
|
|
// a slot and then loads the slot's mark bit while the GC thread
|
|
// writes to the slot's mark bit and then as part of scanning reads
|
|
// the slot.
|
|
//
|
|
// Initially both [slot] and [slotmark] are 0 (nil)
|
|
// Mutator thread GC thread
|
|
// st [slot], ptr st [slotmark], 1
|
|
//
|
|
// ld r1, [slotmark] ld r2, [slot]
|
|
//
|
|
// Without an expensive memory barrier between the st and the ld, the final
|
|
// result on most HW (including 386/amd64) can be r1==r2==0. This is a classic
|
|
// example of what can happen when loads are allowed to be reordered with older
|
|
// stores (avoiding such reorderings lies at the heart of the classic
|
|
// Peterson/Dekker algorithms for mutual exclusion). Rather than require memory
|
|
// barriers, which will slow down both the mutator and the GC, we always grey
|
|
// the ptr object regardless of the slot's color.
|
|
//
|
|
// Another place where we intentionally omit memory barriers is when
|
|
// accessing mheap_.arena_used to check if a pointer points into the
|
|
// heap. On relaxed memory machines, it's possible for a mutator to
|
|
// extend the size of the heap by updating arena_used, allocate an
|
|
// object from this new region, and publish a pointer to that object,
|
|
// but for tracing running on another processor to observe the pointer
|
|
// but use the old value of arena_used. In this case, tracing will not
|
|
// mark the object, even though it's reachable. However, the mutator
|
|
// is guaranteed to execute a write barrier when it publishes the
|
|
// pointer, so it will take care of marking the object. A general
|
|
// consequence of this is that the garbage collector may cache the
|
|
// value of mheap_.arena_used. (See issue #9984.)
|
|
//
|
|
//
|
|
// Stack writes:
|
|
//
|
|
// The compiler omits write barriers for writes to the current frame,
|
|
// but if a stack pointer has been passed down the call stack, the
|
|
// compiler will generate a write barrier for writes through that
|
|
// pointer (because it doesn't know it's not a heap pointer).
|
|
//
|
|
// One might be tempted to ignore the write barrier if slot points
|
|
// into to the stack. Don't do it! Mark termination only re-scans
|
|
// frames that have potentially been active since the concurrent scan,
|
|
// so it depends on write barriers to track changes to pointers in
|
|
// stack frames that have not been active.
|
|
//
|
|
//
|
|
// Global writes:
|
|
//
|
|
// The Go garbage collector requires write barriers when heap pointers
|
|
// are stored in globals. Many garbage collectors ignore writes to
|
|
// globals and instead pick up global -> heap pointers during
|
|
// termination. This increases pause time, so we instead rely on write
|
|
// barriers for writes to globals so that we don't have to rescan
|
|
// global during mark termination.
|
|
//
|
|
//
|
|
// Publication ordering:
|
|
//
|
|
// The write barrier is *pre-publication*, meaning that the write
|
|
// barrier happens prior to the *slot = ptr write that may make ptr
|
|
// reachable by some goroutine that currently cannot reach it.
|
|
//
|
|
//
|
|
// Signal handler pointer writes:
|
|
//
|
|
// In general, the signal handler cannot safely invoke the write
|
|
// barrier because it may run without a P or even during the write
|
|
// barrier.
|
|
//
|
|
// There is exactly one exception: profbuf.go omits a barrier during
|
|
// signal handler profile logging. That's safe only because of the
|
|
// deletion barrier. See profbuf.go for a detailed argument. If we
|
|
// remove the deletion barrier, we'll have to work out a new way to
|
|
// handle the profile logging.
|
|
|
|
// typedmemmove copies a value of type t to dst from src.
|
|
// Must be nosplit, see #16026.
|
|
//
|
|
// TODO: Perfect for go:nosplitrec since we can't have a safe point
|
|
// anywhere in the bulk barrier or memmove.
|
|
//
|
|
//go:nosplit
|
|
func typedmemmove(typ *_type, dst, src unsafe.Pointer) {
|
|
if dst == src {
|
|
return
|
|
}
|
|
if writeBarrier.needed && typ.ptrdata != 0 {
|
|
bulkBarrierPreWrite(uintptr(dst), uintptr(src), typ.ptrdata)
|
|
}
|
|
// There's a race here: if some other goroutine can write to
|
|
// src, it may change some pointer in src after we've
|
|
// performed the write barrier but before we perform the
|
|
// memory copy. This safe because the write performed by that
|
|
// other goroutine must also be accompanied by a write
|
|
// barrier, so at worst we've unnecessarily greyed the old
|
|
// pointer that was in src.
|
|
memmove(dst, src, typ.size)
|
|
if writeBarrier.cgo {
|
|
cgoCheckMemmove(typ, dst, src, 0, typ.size)
|
|
}
|
|
}
|
|
|
|
//go:linkname reflect_typedmemmove reflect.typedmemmove
|
|
func reflect_typedmemmove(typ *_type, dst, src unsafe.Pointer) {
|
|
if raceenabled {
|
|
raceWriteObjectPC(typ, dst, getcallerpc(), funcPC(reflect_typedmemmove))
|
|
raceReadObjectPC(typ, src, getcallerpc(), funcPC(reflect_typedmemmove))
|
|
}
|
|
if msanenabled {
|
|
msanwrite(dst, typ.size)
|
|
msanread(src, typ.size)
|
|
}
|
|
typedmemmove(typ, dst, src)
|
|
}
|
|
|
|
//go:linkname reflectlite_typedmemmove internal/reflectlite.typedmemmove
|
|
func reflectlite_typedmemmove(typ *_type, dst, src unsafe.Pointer) {
|
|
reflect_typedmemmove(typ, dst, src)
|
|
}
|
|
|
|
// typedmemmovepartial is like typedmemmove but assumes that
|
|
// dst and src point off bytes into the value and only copies size bytes.
|
|
// off must be a multiple of sys.PtrSize.
|
|
//go:linkname reflect_typedmemmovepartial reflect.typedmemmovepartial
|
|
func reflect_typedmemmovepartial(typ *_type, dst, src unsafe.Pointer, off, size uintptr) {
|
|
if writeBarrier.needed && typ.ptrdata > off && size >= sys.PtrSize {
|
|
if off&(sys.PtrSize-1) != 0 {
|
|
panic("reflect: internal error: misaligned offset")
|
|
}
|
|
pwsize := alignDown(size, sys.PtrSize)
|
|
if poff := typ.ptrdata - off; pwsize > poff {
|
|
pwsize = poff
|
|
}
|
|
bulkBarrierPreWrite(uintptr(dst), uintptr(src), pwsize)
|
|
}
|
|
|
|
memmove(dst, src, size)
|
|
if writeBarrier.cgo {
|
|
cgoCheckMemmove(typ, dst, src, off, size)
|
|
}
|
|
}
|
|
|
|
// reflectcallmove is invoked by reflectcall to copy the return values
|
|
// out of the stack and into the heap, invoking the necessary write
|
|
// barriers. dst, src, and size describe the return value area to
|
|
// copy. typ describes the entire frame (not just the return values).
|
|
// typ may be nil, which indicates write barriers are not needed.
|
|
//
|
|
// It must be nosplit and must only call nosplit functions because the
|
|
// stack map of reflectcall is wrong.
|
|
//
|
|
//go:nosplit
|
|
func reflectcallmove(typ *_type, dst, src unsafe.Pointer, size uintptr, regs *abi.RegArgs) {
|
|
if writeBarrier.needed && typ != nil && typ.ptrdata != 0 && size >= sys.PtrSize {
|
|
bulkBarrierPreWrite(uintptr(dst), uintptr(src), size)
|
|
}
|
|
memmove(dst, src, size)
|
|
|
|
// Move pointers returned in registers to a place where the GC can see them.
|
|
for i := range regs.Ints {
|
|
if regs.ReturnIsPtr.Get(i) {
|
|
regs.Ptrs[i] = unsafe.Pointer(regs.Ints[i])
|
|
}
|
|
}
|
|
}
|
|
|
|
//go:nosplit
|
|
func typedslicecopy(typ *_type, dstPtr unsafe.Pointer, dstLen int, srcPtr unsafe.Pointer, srcLen int) int {
|
|
n := dstLen
|
|
if n > srcLen {
|
|
n = srcLen
|
|
}
|
|
if n == 0 {
|
|
return 0
|
|
}
|
|
|
|
// The compiler emits calls to typedslicecopy before
|
|
// instrumentation runs, so unlike the other copying and
|
|
// assignment operations, it's not instrumented in the calling
|
|
// code and needs its own instrumentation.
|
|
if raceenabled {
|
|
callerpc := getcallerpc()
|
|
pc := funcPC(slicecopy)
|
|
racewriterangepc(dstPtr, uintptr(n)*typ.size, callerpc, pc)
|
|
racereadrangepc(srcPtr, uintptr(n)*typ.size, callerpc, pc)
|
|
}
|
|
if msanenabled {
|
|
msanwrite(dstPtr, uintptr(n)*typ.size)
|
|
msanread(srcPtr, uintptr(n)*typ.size)
|
|
}
|
|
|
|
if writeBarrier.cgo {
|
|
cgoCheckSliceCopy(typ, dstPtr, srcPtr, n)
|
|
}
|
|
|
|
if dstPtr == srcPtr {
|
|
return n
|
|
}
|
|
|
|
// Note: No point in checking typ.ptrdata here:
|
|
// compiler only emits calls to typedslicecopy for types with pointers,
|
|
// and growslice and reflect_typedslicecopy check for pointers
|
|
// before calling typedslicecopy.
|
|
size := uintptr(n) * typ.size
|
|
if writeBarrier.needed {
|
|
pwsize := size - typ.size + typ.ptrdata
|
|
bulkBarrierPreWrite(uintptr(dstPtr), uintptr(srcPtr), pwsize)
|
|
}
|
|
// See typedmemmove for a discussion of the race between the
|
|
// barrier and memmove.
|
|
memmove(dstPtr, srcPtr, size)
|
|
return n
|
|
}
|
|
|
|
//go:linkname reflect_typedslicecopy reflect.typedslicecopy
|
|
func reflect_typedslicecopy(elemType *_type, dst, src slice) int {
|
|
if elemType.ptrdata == 0 {
|
|
return slicecopy(dst.array, dst.len, src.array, src.len, elemType.size)
|
|
}
|
|
return typedslicecopy(elemType, dst.array, dst.len, src.array, src.len)
|
|
}
|
|
|
|
// typedmemclr clears the typed memory at ptr with type typ. The
|
|
// memory at ptr must already be initialized (and hence in type-safe
|
|
// state). If the memory is being initialized for the first time, see
|
|
// memclrNoHeapPointers.
|
|
//
|
|
// If the caller knows that typ has pointers, it can alternatively
|
|
// call memclrHasPointers.
|
|
//
|
|
//go:nosplit
|
|
func typedmemclr(typ *_type, ptr unsafe.Pointer) {
|
|
if writeBarrier.needed && typ.ptrdata != 0 {
|
|
bulkBarrierPreWrite(uintptr(ptr), 0, typ.ptrdata)
|
|
}
|
|
memclrNoHeapPointers(ptr, typ.size)
|
|
}
|
|
|
|
//go:linkname reflect_typedmemclr reflect.typedmemclr
|
|
func reflect_typedmemclr(typ *_type, ptr unsafe.Pointer) {
|
|
typedmemclr(typ, ptr)
|
|
}
|
|
|
|
//go:linkname reflect_typedmemclrpartial reflect.typedmemclrpartial
|
|
func reflect_typedmemclrpartial(typ *_type, ptr unsafe.Pointer, off, size uintptr) {
|
|
if writeBarrier.needed && typ.ptrdata != 0 {
|
|
bulkBarrierPreWrite(uintptr(ptr), 0, size)
|
|
}
|
|
memclrNoHeapPointers(ptr, size)
|
|
}
|
|
|
|
// memclrHasPointers clears n bytes of typed memory starting at ptr.
|
|
// The caller must ensure that the type of the object at ptr has
|
|
// pointers, usually by checking typ.ptrdata. However, ptr
|
|
// does not have to point to the start of the allocation.
|
|
//
|
|
//go:nosplit
|
|
func memclrHasPointers(ptr unsafe.Pointer, n uintptr) {
|
|
bulkBarrierPreWrite(uintptr(ptr), 0, n)
|
|
memclrNoHeapPointers(ptr, n)
|
|
}
|