mirror of
https://github.com/golang/go
synced 2024-11-12 07:10:22 -07:00
19dae0799b
except chameneosredux which i know is being edited require gofmt for test/bench R=r https://golang.org/cl/157110
666 lines
18 KiB
Go
666 lines
18 KiB
Go
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
* Neither the name of "The Computer Language Benchmarks Game" nor the
|
|
name of "The Computer Language Shootout Benchmarks" nor the names of
|
|
its contributors may be used to endorse or promote products derived
|
|
from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* The Computer Language Benchmarks Game
|
|
* http://shootout.alioth.debian.org/
|
|
*
|
|
* contributed by The Go Authors.
|
|
* based on meteor-contest.c by Christian Vosteen
|
|
*/
|
|
|
|
package main
|
|
|
|
import (
|
|
"flag";
|
|
"fmt";
|
|
)
|
|
|
|
var max_solutions = flag.Int("n", 2100, "maximum number of solutions")
|
|
|
|
|
|
func boolInt(b bool) int8 {
|
|
if b {
|
|
return 1
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* The board is a 50 cell hexagonal pattern. For . . . . .
|
|
* maximum speed the board will be implemented as . . . . .
|
|
* 50 bits, which will fit into a 64 bit long long . . . . .
|
|
* int. . . . . .
|
|
* . . . . .
|
|
* I will represent 0's as empty cells and 1's . . . . .
|
|
* as full cells. . . . . .
|
|
* . . . . .
|
|
* . . . . .
|
|
* . . . . .
|
|
*/
|
|
|
|
var board uint64 = 0xFFFC000000000000
|
|
|
|
/* The puzzle pieces must be specified by the path followed
|
|
* from one end to the other along 12 hexagonal directions.
|
|
*
|
|
* Piece 0 Piece 1 Piece 2 Piece 3 Piece 4
|
|
*
|
|
* O O O O O O O O O O O O O O O
|
|
* O O O O O O O
|
|
* O O O
|
|
*
|
|
* Piece 5 Piece 6 Piece 7 Piece 8 Piece 9
|
|
*
|
|
* O O O O O O O O O O O O O
|
|
* O O O O O O O O O
|
|
* O O O
|
|
*
|
|
* I had to make it 12 directions because I wanted all of the
|
|
* piece definitions to fit into the same size arrays. It is
|
|
* not possible to define piece 4 in terms of the 6 cardinal
|
|
* directions in 4 moves.
|
|
*/
|
|
|
|
const (
|
|
E = iota;
|
|
ESE;
|
|
SE;
|
|
S;
|
|
SW;
|
|
WSW;
|
|
W;
|
|
WNW;
|
|
NW;
|
|
N;
|
|
NE;
|
|
ENE;
|
|
PIVOT;
|
|
)
|
|
|
|
var piece_def = [10][4]int8{
|
|
[4]int8{E, E, E, SE},
|
|
[4]int8{SE, E, NE, E},
|
|
[4]int8{E, E, SE, SW},
|
|
[4]int8{E, E, SW, SE},
|
|
[4]int8{SE, E, NE, S},
|
|
[4]int8{E, E, SW, E},
|
|
[4]int8{E, SE, SE, NE},
|
|
[4]int8{E, SE, SE, W},
|
|
[4]int8{E, SE, E, E},
|
|
[4]int8{E, E, E, SW},
|
|
}
|
|
|
|
|
|
/* To minimize the amount of work done in the recursive solve function below,
|
|
* I'm going to allocate enough space for all legal rotations of each piece
|
|
* at each position on the board. That's 10 pieces x 50 board positions x
|
|
* 12 rotations. However, not all 12 rotations will fit on every cell, so
|
|
* I'll have to keep count of the actual number that do.
|
|
* The pieces are going to be unsigned long long ints just like the board so
|
|
* they can be bitwise-anded with the board to determine if they fit.
|
|
* I'm also going to record the next possible open cell for each piece and
|
|
* location to reduce the burden on the solve function.
|
|
*/
|
|
var (
|
|
pieces [10][50][12]uint64;
|
|
piece_counts [10][50]int;
|
|
next_cell [10][50][12]int8;
|
|
)
|
|
|
|
/* Returns the direction rotated 60 degrees clockwise */
|
|
func rotate(dir int8) int8 { return (dir + 2) % PIVOT }
|
|
|
|
/* Returns the direction flipped on the horizontal axis */
|
|
func flip(dir int8) int8 { return (PIVOT - dir) % PIVOT }
|
|
|
|
|
|
/* Returns the new cell index from the specified cell in the
|
|
* specified direction. The index is only valid if the
|
|
* starting cell and direction have been checked by the
|
|
* out_of_bounds function first.
|
|
*/
|
|
func shift(cell, dir int8) int8 {
|
|
switch dir {
|
|
case E:
|
|
return cell + 1
|
|
case ESE:
|
|
if ((cell / 5) % 2) != 0 {
|
|
return cell + 7
|
|
} else {
|
|
return cell + 6
|
|
}
|
|
case SE:
|
|
if ((cell / 5) % 2) != 0 {
|
|
return cell + 6
|
|
} else {
|
|
return cell + 5
|
|
}
|
|
case S:
|
|
return cell + 10
|
|
case SW:
|
|
if ((cell / 5) % 2) != 0 {
|
|
return cell + 5
|
|
} else {
|
|
return cell + 4
|
|
}
|
|
case WSW:
|
|
if ((cell / 5) % 2) != 0 {
|
|
return cell + 4
|
|
} else {
|
|
return cell + 3
|
|
}
|
|
case W:
|
|
return cell - 1
|
|
case WNW:
|
|
if ((cell / 5) % 2) != 0 {
|
|
return cell - 6
|
|
} else {
|
|
return cell - 7
|
|
}
|
|
case NW:
|
|
if ((cell / 5) % 2) != 0 {
|
|
return cell - 5
|
|
} else {
|
|
return cell - 6
|
|
}
|
|
case N:
|
|
return cell - 10
|
|
case NE:
|
|
if ((cell / 5) % 2) != 0 {
|
|
return cell - 4
|
|
} else {
|
|
return cell - 5
|
|
}
|
|
case ENE:
|
|
if ((cell / 5) % 2) != 0 {
|
|
return cell - 3
|
|
} else {
|
|
return cell - 4
|
|
}
|
|
}
|
|
return cell;
|
|
}
|
|
|
|
/* Returns wether the specified cell and direction will land outside
|
|
* of the board. Used to determine if a piece is at a legal board
|
|
* location or not.
|
|
*/
|
|
func out_of_bounds(cell, dir int8) bool {
|
|
switch dir {
|
|
case E:
|
|
return cell%5 == 4
|
|
case ESE:
|
|
i := cell % 10;
|
|
return i == 4 || i == 8 || i == 9 || cell >= 45;
|
|
case SE:
|
|
return cell%10 == 9 || cell >= 45
|
|
case S:
|
|
return cell >= 40
|
|
case SW:
|
|
return cell%10 == 0 || cell >= 45
|
|
case WSW:
|
|
i := cell % 10;
|
|
return i == 0 || i == 1 || i == 5 || cell >= 45;
|
|
case W:
|
|
return cell%5 == 0
|
|
case WNW:
|
|
i := cell % 10;
|
|
return i == 0 || i == 1 || i == 5 || cell < 5;
|
|
case NW:
|
|
return cell%10 == 0 || cell < 5
|
|
case N:
|
|
return cell < 10
|
|
case NE:
|
|
return cell%10 == 9 || cell < 5
|
|
case ENE:
|
|
i := cell % 10;
|
|
return i == 4 || i == 8 || i == 9 || cell < 5;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Rotate a piece 60 degrees clockwise */
|
|
func rotate_piece(piece int) {
|
|
for i := 0; i < 4; i++ {
|
|
piece_def[piece][i] = rotate(piece_def[piece][i])
|
|
}
|
|
}
|
|
|
|
/* Flip a piece along the horizontal axis */
|
|
func flip_piece(piece int) {
|
|
for i := 0; i < 4; i++ {
|
|
piece_def[piece][i] = flip(piece_def[piece][i])
|
|
}
|
|
}
|
|
|
|
/* Convenience function to quickly calculate all of the indices for a piece */
|
|
func calc_cell_indices(cell []int8, piece int, index int8) {
|
|
cell[0] = index;
|
|
for i := 1; i < 5; i++ {
|
|
cell[i] = shift(cell[i-1], piece_def[piece][i-1])
|
|
}
|
|
}
|
|
|
|
/* Convenience function to quickly calculate if a piece fits on the board */
|
|
func cells_fit_on_board(cell []int8, piece int) bool {
|
|
return !out_of_bounds(cell[0], piece_def[piece][0]) &&
|
|
!out_of_bounds(cell[1], piece_def[piece][1]) &&
|
|
!out_of_bounds(cell[2], piece_def[piece][2]) &&
|
|
!out_of_bounds(cell[3], piece_def[piece][3])
|
|
}
|
|
|
|
/* Returns the lowest index of the cells of a piece.
|
|
* I use the lowest index that a piece occupies as the index for looking up
|
|
* the piece in the solve function.
|
|
*/
|
|
func minimum_of_cells(cell []int8) int8 {
|
|
minimum := cell[0];
|
|
for i := 1; i < 5; i++ {
|
|
if cell[i] < minimum {
|
|
minimum = cell[i]
|
|
}
|
|
}
|
|
return minimum;
|
|
}
|
|
|
|
/* Calculate the lowest possible open cell if the piece is placed on the board.
|
|
* Used to later reduce the amount of time searching for open cells in the
|
|
* solve function.
|
|
*/
|
|
func first_empty_cell(cell []int8, minimum int8) int8 {
|
|
first_empty := minimum;
|
|
for first_empty == cell[0] || first_empty == cell[1] ||
|
|
first_empty == cell[2] || first_empty == cell[3] ||
|
|
first_empty == cell[4] {
|
|
first_empty++
|
|
}
|
|
return first_empty;
|
|
}
|
|
|
|
/* Generate the unsigned long long int that will later be anded with the
|
|
* board to determine if it fits.
|
|
*/
|
|
func bitmask_from_cells(cell []int8) uint64 {
|
|
var piece_mask uint64;
|
|
for i := 0; i < 5; i++ {
|
|
piece_mask |= 1 << uint(cell[i])
|
|
}
|
|
return piece_mask;
|
|
}
|
|
|
|
/* Record the piece and other important information in arrays that will
|
|
* later be used by the solve function.
|
|
*/
|
|
func record_piece(piece int, minimum int8, first_empty int8, piece_mask uint64) {
|
|
pieces[piece][minimum][piece_counts[piece][minimum]] = piece_mask;
|
|
next_cell[piece][minimum][piece_counts[piece][minimum]] = first_empty;
|
|
piece_counts[piece][minimum]++;
|
|
}
|
|
|
|
|
|
/* Fill the entire board going cell by cell. If any cells are "trapped"
|
|
* they will be left alone.
|
|
*/
|
|
func fill_contiguous_space(board []int8, index int8) {
|
|
if board[index] == 1 {
|
|
return
|
|
}
|
|
board[index] = 1;
|
|
if !out_of_bounds(index, E) {
|
|
fill_contiguous_space(board, shift(index, E))
|
|
}
|
|
if !out_of_bounds(index, SE) {
|
|
fill_contiguous_space(board, shift(index, SE))
|
|
}
|
|
if !out_of_bounds(index, SW) {
|
|
fill_contiguous_space(board, shift(index, SW))
|
|
}
|
|
if !out_of_bounds(index, W) {
|
|
fill_contiguous_space(board, shift(index, W))
|
|
}
|
|
if !out_of_bounds(index, NW) {
|
|
fill_contiguous_space(board, shift(index, NW))
|
|
}
|
|
if !out_of_bounds(index, NE) {
|
|
fill_contiguous_space(board, shift(index, NE))
|
|
}
|
|
}
|
|
|
|
|
|
/* To thin the number of pieces, I calculate if any of them trap any empty
|
|
* cells at the edges. There are only a handful of exceptions where the
|
|
* the board can be solved with the trapped cells. For example: piece 8 can
|
|
* trap 5 cells in the corner, but piece 3 can fit in those cells, or piece 0
|
|
* can split the board in half where both halves are viable.
|
|
*/
|
|
func has_island(cell []int8, piece int) bool {
|
|
temp_board := make([]int8, 50);
|
|
var i int;
|
|
for i = 0; i < 5; i++ {
|
|
temp_board[cell[i]] = 1
|
|
}
|
|
i = 49;
|
|
for temp_board[i] == 1 {
|
|
i--
|
|
}
|
|
fill_contiguous_space(temp_board, int8(i));
|
|
c := 0;
|
|
for i = 0; i < 50; i++ {
|
|
if temp_board[i] == 0 {
|
|
c++
|
|
}
|
|
}
|
|
if c == 0 || (c == 5 && piece == 8) || (c == 40 && piece == 8) ||
|
|
(c%5 == 0 && piece == 0) {
|
|
return false
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Calculate all six rotations of the specified piece at the specified index.
|
|
* We calculate only half of piece 3's rotations. This is because any solution
|
|
* found has an identical solution rotated 180 degrees. Thus we can reduce the
|
|
* number of attempted pieces in the solve algorithm by not including the 180-
|
|
* degree-rotated pieces of ONE of the pieces. I chose piece 3 because it gave
|
|
* me the best time ;)
|
|
*/
|
|
func calc_six_rotations(piece, index int) {
|
|
cell := make([]int8, 5);
|
|
for rotation := 0; rotation < 6; rotation++ {
|
|
if piece != 3 || rotation < 3 {
|
|
calc_cell_indices(cell, piece, int8(index));
|
|
if cells_fit_on_board(cell, piece) && !has_island(cell, piece) {
|
|
minimum := minimum_of_cells(cell);
|
|
first_empty := first_empty_cell(cell, minimum);
|
|
piece_mask := bitmask_from_cells(cell);
|
|
record_piece(piece, minimum, first_empty, piece_mask);
|
|
}
|
|
}
|
|
rotate_piece(piece);
|
|
}
|
|
}
|
|
|
|
/* Calculate every legal rotation for each piece at each board location. */
|
|
func calc_pieces() {
|
|
for piece := 0; piece < 10; piece++ {
|
|
for index := 0; index < 50; index++ {
|
|
calc_six_rotations(piece, index);
|
|
flip_piece(piece);
|
|
calc_six_rotations(piece, index);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Calculate all 32 possible states for a 5-bit row and all rows that will
|
|
* create islands that follow any of the 32 possible rows. These pre-
|
|
* calculated 5-bit rows will be used to find islands in a partially solved
|
|
* board in the solve function.
|
|
*/
|
|
const (
|
|
ROW_MASK = 0x1F;
|
|
TRIPLE_MASK = 0x7FFF;
|
|
)
|
|
|
|
var (
|
|
all_rows = [32]int8{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
|
|
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
|
|
};
|
|
bad_even_rows [32][32]int8;
|
|
bad_odd_rows [32][32]int8;
|
|
bad_even_triple [32768]int8;
|
|
bad_odd_triple [32768]int8;
|
|
)
|
|
|
|
func rows_bad(row1, row2 int8, even bool) int8 {
|
|
/* even is referring to row1 */
|
|
var row2_shift int8;
|
|
/* Test for blockages at same index and shifted index */
|
|
if even {
|
|
row2_shift = ((row2 << 1) & ROW_MASK) | 0x01
|
|
} else {
|
|
row2_shift = (row2 >> 1) | 0x10
|
|
}
|
|
block := ((row1 ^ row2) & row2) & ((row1 ^ row2_shift) & row2_shift);
|
|
/* Test for groups of 0's */
|
|
in_zeroes := false;
|
|
group_okay := false;
|
|
for i := uint8(0); i < 5; i++ {
|
|
if row1&(1<<i) != 0 {
|
|
if in_zeroes {
|
|
if !group_okay {
|
|
return 1
|
|
}
|
|
in_zeroes = false;
|
|
group_okay = false;
|
|
}
|
|
} else {
|
|
if !in_zeroes {
|
|
in_zeroes = true
|
|
}
|
|
if (block & (1 << i)) == 0 {
|
|
group_okay = true
|
|
}
|
|
}
|
|
}
|
|
if in_zeroes {
|
|
return boolInt(!group_okay)
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Check for cases where three rows checked sequentially cause a false
|
|
* positive. One scenario is when 5 cells may be surrounded where piece 5
|
|
* or 7 can fit. The other scenario is when piece 2 creates a hook shape.
|
|
*/
|
|
func triple_is_okay(row1, row2, row3 int, even bool) bool {
|
|
if even {
|
|
/* There are four cases:
|
|
* row1: 00011 00001 11001 10101
|
|
* row2: 01011 00101 10001 10001
|
|
* row3: 011?? 00110 ????? ?????
|
|
*/
|
|
return ((row1 == 0x03) && (row2 == 0x0B) && ((row3 & 0x1C) == 0x0C)) ||
|
|
((row1 == 0x01) && (row2 == 0x05) && (row3 == 0x06)) ||
|
|
((row1 == 0x19) && (row2 == 0x11)) ||
|
|
((row1 == 0x15) && (row2 == 0x11))
|
|
}
|
|
/* There are two cases:
|
|
* row1: 10011 10101
|
|
* row2: 10001 10001
|
|
* row3: ????? ?????
|
|
*/
|
|
return ((row1 == 0x13) && (row2 == 0x11)) ||
|
|
((row1 == 0x15) && (row2 == 0x11));
|
|
}
|
|
|
|
func calc_rows() {
|
|
for row1 := int8(0); row1 < 32; row1++ {
|
|
for row2 := int8(0); row2 < 32; row2++ {
|
|
bad_even_rows[row1][row2] = rows_bad(row1, row2, true);
|
|
bad_odd_rows[row1][row2] = rows_bad(row1, row2, false);
|
|
}
|
|
}
|
|
for row1 := 0; row1 < 32; row1++ {
|
|
for row2 := 0; row2 < 32; row2++ {
|
|
for row3 := 0; row3 < 32; row3++ {
|
|
result1 := bad_even_rows[row1][row2];
|
|
result2 := bad_odd_rows[row2][row3];
|
|
if result1 == 0 && result2 != 0 && triple_is_okay(row1, row2, row3, true) {
|
|
bad_even_triple[row1+(row2*32)+(row3*1024)] = 0
|
|
} else {
|
|
bad_even_triple[row1+(row2*32)+(row3*1024)] = boolInt(result1 != 0 || result2 != 0)
|
|
}
|
|
|
|
result1 = bad_odd_rows[row1][row2];
|
|
result2 = bad_even_rows[row2][row3];
|
|
if result1 == 0 && result2 != 0 && triple_is_okay(row1, row2, row3, false) {
|
|
bad_odd_triple[row1+(row2*32)+(row3*1024)] = 0
|
|
} else {
|
|
bad_odd_triple[row1+(row2*32)+(row3*1024)] = boolInt(result1 != 0 || result2 != 0)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Calculate islands while solving the board.
|
|
*/
|
|
func boardHasIslands(cell int8) int8 {
|
|
/* Too low on board, don't bother checking */
|
|
if cell >= 40 {
|
|
return 0
|
|
}
|
|
current_triple := (board >> uint((cell/5)*5)) & TRIPLE_MASK;
|
|
if (cell/5)%2 != 0 {
|
|
return bad_odd_triple[current_triple]
|
|
}
|
|
return bad_even_triple[current_triple];
|
|
}
|
|
|
|
|
|
/* The recursive solve algorithm. Try to place each permutation in the upper-
|
|
* leftmost empty cell. Mark off available pieces as it goes along.
|
|
* Because the board is a bit mask, the piece number and bit mask must be saved
|
|
* at each successful piece placement. This data is used to create a 50 char
|
|
* array if a solution is found.
|
|
*/
|
|
var (
|
|
avail uint16 = 0x03FF;
|
|
sol_nums [10]int8;
|
|
sol_masks [10]uint64;
|
|
solutions [2100][50]int8;
|
|
solution_count = 0;
|
|
)
|
|
|
|
func record_solution() {
|
|
for sol_no := 0; sol_no < 10; sol_no++ {
|
|
sol_mask := sol_masks[sol_no];
|
|
for index := 0; index < 50; index++ {
|
|
if sol_mask&1 == 1 {
|
|
solutions[solution_count][index] = sol_nums[sol_no];
|
|
/* Board rotated 180 degrees is a solution too! */
|
|
solutions[solution_count+1][49-index] = sol_nums[sol_no];
|
|
}
|
|
sol_mask = sol_mask >> 1;
|
|
}
|
|
}
|
|
solution_count += 2;
|
|
}
|
|
|
|
func solve(depth, cell int8) {
|
|
if solution_count >= *max_solutions {
|
|
return
|
|
}
|
|
|
|
for board&(1<<uint(cell)) != 0 {
|
|
cell++
|
|
}
|
|
|
|
for piece := int8(0); piece < 10; piece++ {
|
|
var piece_no_mask uint16 = 1 << uint(piece);
|
|
if avail&piece_no_mask == 0 {
|
|
continue
|
|
}
|
|
avail ^= piece_no_mask;
|
|
max_rots := piece_counts[piece][cell];
|
|
piece_mask := pieces[piece][cell];
|
|
for rotation := 0; rotation < max_rots; rotation++ {
|
|
if board&piece_mask[rotation] == 0 {
|
|
sol_nums[depth] = piece;
|
|
sol_masks[depth] = piece_mask[rotation];
|
|
if depth == 9 {
|
|
/* Solution found!!!!!11!!ONE! */
|
|
record_solution();
|
|
avail ^= piece_no_mask;
|
|
return;
|
|
}
|
|
board |= piece_mask[rotation];
|
|
if boardHasIslands(next_cell[piece][cell][rotation]) == 0 {
|
|
solve(depth+1, next_cell[piece][cell][rotation])
|
|
}
|
|
board ^= piece_mask[rotation];
|
|
}
|
|
}
|
|
avail ^= piece_no_mask;
|
|
}
|
|
}
|
|
|
|
/* pretty print a board in the specified hexagonal format */
|
|
func pretty(b *[50]int8) {
|
|
for i := 0; i < 50; i += 10 {
|
|
fmt.Printf("%c %c %c %c %c \n %c %c %c %c %c \n", b[i]+'0', b[i+1]+'0',
|
|
b[i+2]+'0', b[i+3]+'0', b[i+4]+'0', b[i+5]+'0', b[i+6]+'0',
|
|
b[i+7]+'0', b[i+8]+'0', b[i+9]+'0')
|
|
}
|
|
fmt.Printf("\n");
|
|
}
|
|
|
|
/* Find smallest and largest solutions */
|
|
func smallest_largest() (smallest, largest *[50]int8) {
|
|
smallest = &solutions[0];
|
|
largest = &solutions[0];
|
|
for i := 1; i < solution_count; i++ {
|
|
candidate := &solutions[i];
|
|
for j, s := range *smallest {
|
|
c := candidate[j];
|
|
if c == s {
|
|
continue
|
|
}
|
|
if c < s {
|
|
smallest = candidate
|
|
}
|
|
break;
|
|
}
|
|
for j, s := range *largest {
|
|
c := candidate[j];
|
|
if c == s {
|
|
continue
|
|
}
|
|
if c > s {
|
|
largest = candidate
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
func main() {
|
|
flag.Parse();
|
|
calc_pieces();
|
|
calc_rows();
|
|
solve(0, 0);
|
|
fmt.Printf("%d solutions found\n\n", solution_count);
|
|
smallest, largest := smallest_largest();
|
|
pretty(smallest);
|
|
pretty(largest);
|
|
}
|