1
0
mirror of https://github.com/golang/go synced 2024-11-23 16:40:03 -07:00
go/test/prove.go
Austin Clements 837ed98d63 cmd/compile: don't produce a past-the-end pointer in range loops
Currently, range loops over slices and arrays are compiled roughly
like:

for i, x := range s { b }
  ⇓
for i, _n, _p := 0, len(s), &s[0]; i < _n; i, _p = i+1, _p + unsafe.Sizeof(s[0]) { b }
  ⇓
i, _n, _p := 0, len(s), &s[0]
goto cond
body:
{ b }
i, _p = i+1, _p + unsafe.Sizeof(s[0])
cond:
if i < _n { goto body } else { goto end }
end:

The problem with this lowering is that _p may temporarily point past
the end of the allocation the moment before the loop terminates. Right
now this isn't a problem because there's never a safe-point during
this brief moment.

We're about to introduce safe-points everywhere, so this bad pointer
is going to be a problem. We could mark the increment as an unsafe
block, but this inhibits reordering opportunities and could result in
infrequent safe-points if the body is short.

Instead, this CL fixes this by changing how we compile range loops to
never produce this past-the-end pointer. It changes the lowering to
roughly:

i, _n, _p := 0, len(s), &s[0]
if i < _n { goto body } else { goto end }
top:
_p += unsafe.Sizeof(s[0])
body:
{ b }
i++
if i < _n { goto top } else { goto end }
end:

Notably, the increment is split into two parts: we increment the index
before checking the condition, but increment the pointer only *after*
the condition check has succeeded.

The implementation builds on the OFORUNTIL construct that was
introduced during the loop preemption experiments, since OFORUNTIL
places the increment and condition after the loop body. To support the
extra "late increment" step, we further define OFORUNTIL's "List"
field to contain the late increment statements. This makes all of this
a relatively small change.

This depends on the improvements to the prove pass in CL 102603. With
the current lowering, bounds-check elimination knows that i < _n in
the body because the body block is dominated by the cond block. In the
new lowering, deriving this fact requires detecting that i < _n on
*both* paths into body and hence is true in body. CL 102603 made prove
able to detect this.

The code size effect of this is minimal. The cmd/go binary on
linux/amd64 increases by 0.17%. Performance-wise, this actually
appears to be a net win, though it's mostly noise:

name                      old time/op    new time/op    delta
BinaryTree17-12              2.80s ± 0%     2.61s ± 1%  -6.88%  (p=0.000 n=20+18)
Fannkuch11-12                2.41s ± 0%     2.42s ± 0%  +0.05%  (p=0.005 n=20+20)
FmtFprintfEmpty-12          41.6ns ± 5%    41.4ns ± 6%    ~     (p=0.765 n=20+19)
FmtFprintfString-12         69.4ns ± 3%    69.3ns ± 1%    ~     (p=0.084 n=19+17)
FmtFprintfInt-12            76.1ns ± 1%    77.3ns ± 1%  +1.57%  (p=0.000 n=19+19)
FmtFprintfIntInt-12          122ns ± 2%     123ns ± 3%  +0.95%  (p=0.015 n=20+20)
FmtFprintfPrefixedInt-12     153ns ± 2%     151ns ± 3%  -1.27%  (p=0.013 n=20+20)
FmtFprintfFloat-12           215ns ± 0%     216ns ± 0%  +0.47%  (p=0.000 n=20+16)
FmtManyArgs-12               486ns ± 1%     498ns ± 0%  +2.40%  (p=0.000 n=20+17)
GobDecode-12                6.43ms ± 0%    6.50ms ± 0%  +1.08%  (p=0.000 n=18+19)
GobEncode-12                5.43ms ± 1%    5.47ms ± 0%  +0.76%  (p=0.000 n=20+20)
Gzip-12                      218ms ± 1%     218ms ± 1%    ~     (p=0.883 n=20+20)
Gunzip-12                   38.8ms ± 0%    38.9ms ± 0%    ~     (p=0.644 n=19+19)
HTTPClientServer-12         76.2µs ± 1%    76.4µs ± 2%    ~     (p=0.218 n=20+20)
JSONEncode-12               12.2ms ± 0%    12.3ms ± 1%  +0.45%  (p=0.000 n=19+19)
JSONDecode-12               54.2ms ± 1%    53.3ms ± 0%  -1.67%  (p=0.000 n=20+20)
Mandelbrot200-12            3.71ms ± 0%    3.71ms ± 0%    ~     (p=0.143 n=19+20)
GoParse-12                  3.22ms ± 0%    3.19ms ± 1%  -0.72%  (p=0.000 n=20+20)
RegexpMatchEasy0_32-12      76.7ns ± 1%    75.8ns ± 1%  -1.19%  (p=0.000 n=20+17)
RegexpMatchEasy0_1K-12       245ns ± 1%     243ns ± 0%  -0.72%  (p=0.000 n=18+17)
RegexpMatchEasy1_32-12      71.9ns ± 0%    71.7ns ± 1%  -0.39%  (p=0.006 n=12+18)
RegexpMatchEasy1_1K-12       358ns ± 1%     354ns ± 1%  -1.13%  (p=0.000 n=20+19)
RegexpMatchMedium_32-12      105ns ± 2%     105ns ± 1%  -0.63%  (p=0.007 n=19+20)
RegexpMatchMedium_1K-12     31.9µs ± 1%    31.9µs ± 1%    ~     (p=1.000 n=17+17)
RegexpMatchHard_32-12       1.51µs ± 1%    1.52µs ± 2%  +0.46%  (p=0.042 n=18+18)
RegexpMatchHard_1K-12       45.3µs ± 1%    45.5µs ± 2%  +0.44%  (p=0.029 n=18+19)
Revcomp-12                   388ms ± 1%     385ms ± 0%  -0.57%  (p=0.000 n=19+18)
Template-12                 63.0ms ± 1%    63.3ms ± 0%  +0.50%  (p=0.000 n=19+20)
TimeParse-12                 309ns ± 1%     307ns ± 0%  -0.62%  (p=0.000 n=20+20)
TimeFormat-12                328ns ± 0%     333ns ± 0%  +1.35%  (p=0.000 n=19+19)
[Geo mean]                  47.0µs         46.9µs       -0.20%

(https://perf.golang.org/search?q=upload:20180326.1)

For #10958.
For #24543.

Change-Id: Icbd52e711fdbe7938a1fea3e6baca1104b53ac3a
Reviewed-on: https://go-review.googlesource.com/102604
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: David Chase <drchase@google.com>
2018-05-22 14:15:46 +00:00

703 lines
12 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// +build amd64
// errorcheck -0 -d=ssa/prove/debug=1
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import "math"
func f0(a []int) int {
a[0] = 1
a[0] = 1 // ERROR "Proved IsInBounds$"
a[6] = 1
a[6] = 1 // ERROR "Proved IsInBounds$"
a[5] = 1 // ERROR "Proved IsInBounds$"
a[5] = 1 // ERROR "Proved IsInBounds$"
return 13
}
func f1(a []int) int {
if len(a) <= 5 {
return 18
}
a[0] = 1 // ERROR "Proved IsInBounds$"
a[0] = 1 // ERROR "Proved IsInBounds$"
a[6] = 1
a[6] = 1 // ERROR "Proved IsInBounds$"
a[5] = 1 // ERROR "Proved IsInBounds$"
a[5] = 1 // ERROR "Proved IsInBounds$"
return 26
}
func f1b(a []int, i int, j uint) int {
if i >= 0 && i < len(a) {
return a[i] // ERROR "Proved IsInBounds$"
}
if i >= 10 && i < len(a) {
return a[i] // ERROR "Proved IsInBounds$"
}
if i >= 10 && i < len(a) {
return a[i] // ERROR "Proved IsInBounds$"
}
if i >= 10 && i < len(a) {
return a[i-10] // ERROR "Proved IsInBounds$"
}
if j < uint(len(a)) {
return a[j] // ERROR "Proved IsInBounds$"
}
return 0
}
func f1c(a []int, i int64) int {
c := uint64(math.MaxInt64 + 10) // overflows int
d := int64(c)
if i >= d && i < int64(len(a)) {
// d overflows, should not be handled.
return a[i]
}
return 0
}
func f2(a []int) int {
for i := range a { // ERROR "Induction variable: limits \[0,\?\), increment 1"
a[i+1] = i
a[i+1] = i // ERROR "Proved IsInBounds$"
}
return 34
}
func f3(a []uint) int {
for i := uint(0); i < uint(len(a)); i++ {
a[i] = i // ERROR "Proved IsInBounds$"
}
return 41
}
func f4a(a, b, c int) int {
if a < b {
if a == b { // ERROR "Disproved Eq64$"
return 47
}
if a > b { // ERROR "Disproved Greater64$"
return 50
}
if a < b { // ERROR "Proved Less64$"
return 53
}
// We can't get to this point and prove knows that, so
// there's no message for the next (obvious) branch.
if a != a {
return 56
}
return 61
}
return 63
}
func f4b(a, b, c int) int {
if a <= b {
if a >= b {
if a == b { // ERROR "Proved Eq64$"
return 70
}
return 75
}
return 77
}
return 79
}
func f4c(a, b, c int) int {
if a <= b {
if a >= b {
if a != b { // ERROR "Disproved Neq64$"
return 73
}
return 75
}
return 77
}
return 79
}
func f4d(a, b, c int) int {
if a < b {
if a < c {
if a < b { // ERROR "Proved Less64$"
if a < c { // ERROR "Proved Less64$"
return 87
}
return 89
}
return 91
}
return 93
}
return 95
}
func f4e(a, b, c int) int {
if a < b {
if b > a { // ERROR "Proved Greater64$"
return 101
}
return 103
}
return 105
}
func f4f(a, b, c int) int {
if a <= b {
if b > a {
if b == a { // ERROR "Disproved Eq64$"
return 112
}
return 114
}
if b >= a { // ERROR "Proved Geq64$"
if b == a { // ERROR "Proved Eq64$"
return 118
}
return 120
}
return 122
}
return 124
}
func f5(a, b uint) int {
if a == b {
if a <= b { // ERROR "Proved Leq64U$"
return 130
}
return 132
}
return 134
}
// These comparisons are compile time constants.
func f6a(a uint8) int {
if a < a { // ERROR "Disproved Less8U$"
return 140
}
return 151
}
func f6b(a uint8) int {
if a < a { // ERROR "Disproved Less8U$"
return 140
}
return 151
}
func f6x(a uint8) int {
if a > a { // ERROR "Disproved Greater8U$"
return 143
}
return 151
}
func f6d(a uint8) int {
if a <= a { // ERROR "Proved Leq8U$"
return 146
}
return 151
}
func f6e(a uint8) int {
if a >= a { // ERROR "Proved Geq8U$"
return 149
}
return 151
}
func f7(a []int, b int) int {
if b < len(a) {
a[b] = 3
if b < len(a) { // ERROR "Proved Less64$"
a[b] = 5 // ERROR "Proved IsInBounds$"
}
}
return 161
}
func f8(a, b uint) int {
if a == b {
return 166
}
if a > b {
return 169
}
if a < b { // ERROR "Proved Less64U$"
return 172
}
return 174
}
func f9(a, b bool) int {
if a {
return 1
}
if a || b { // ERROR "Disproved Arg$"
return 2
}
return 3
}
func f10(a string) int {
n := len(a)
// We optimize comparisons with small constant strings (see cmd/compile/internal/gc/walk.go),
// so this string literal must be long.
if a[:n>>1] == "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" {
return 0
}
return 1
}
func f11a(a []int, i int) {
useInt(a[i])
useInt(a[i]) // ERROR "Proved IsInBounds$"
}
func f11b(a []int, i int) {
useSlice(a[i:])
useSlice(a[i:]) // ERROR "Proved IsSliceInBounds$"
}
func f11c(a []int, i int) {
useSlice(a[:i])
useSlice(a[:i]) // ERROR "Proved IsSliceInBounds$"
}
func f11d(a []int, i int) {
useInt(a[2*i+7])
useInt(a[2*i+7]) // ERROR "Proved IsInBounds$"
}
func f12(a []int, b int) {
useSlice(a[:b])
}
func f13a(a, b, c int, x bool) int {
if a > 12 {
if x {
if a < 12 { // ERROR "Disproved Less64$"
return 1
}
}
if x {
if a <= 12 { // ERROR "Disproved Leq64$"
return 2
}
}
if x {
if a == 12 { // ERROR "Disproved Eq64$"
return 3
}
}
if x {
if a >= 12 { // ERROR "Proved Geq64$"
return 4
}
}
if x {
if a > 12 { // ERROR "Proved Greater64$"
return 5
}
}
return 6
}
return 0
}
func f13b(a int, x bool) int {
if a == -9 {
if x {
if a < -9 { // ERROR "Disproved Less64$"
return 7
}
}
if x {
if a <= -9 { // ERROR "Proved Leq64$"
return 8
}
}
if x {
if a == -9 { // ERROR "Proved Eq64$"
return 9
}
}
if x {
if a >= -9 { // ERROR "Proved Geq64$"
return 10
}
}
if x {
if a > -9 { // ERROR "Disproved Greater64$"
return 11
}
}
return 12
}
return 0
}
func f13c(a int, x bool) int {
if a < 90 {
if x {
if a < 90 { // ERROR "Proved Less64$"
return 13
}
}
if x {
if a <= 90 { // ERROR "Proved Leq64$"
return 14
}
}
if x {
if a == 90 { // ERROR "Disproved Eq64$"
return 15
}
}
if x {
if a >= 90 { // ERROR "Disproved Geq64$"
return 16
}
}
if x {
if a > 90 { // ERROR "Disproved Greater64$"
return 17
}
}
return 18
}
return 0
}
func f13d(a int) int {
if a < 5 {
if a < 9 { // ERROR "Proved Less64$"
return 1
}
}
return 0
}
func f13e(a int) int {
if a > 9 {
if a > 5 { // ERROR "Proved Greater64$"
return 1
}
}
return 0
}
func f13f(a int64) int64 {
if a > math.MaxInt64 {
if a == 0 { // ERROR "Disproved Eq64$"
return 1
}
}
return 0
}
func f13g(a int) int {
if a < 3 {
return 5
}
if a > 3 {
return 6
}
if a == 3 { // ERROR "Proved Eq64$"
return 7
}
return 8
}
func f13h(a int) int {
if a < 3 {
if a > 1 {
if a == 2 { // ERROR "Proved Eq64$"
return 5
}
}
}
return 0
}
func f13i(a uint) int {
if a == 0 {
return 1
}
if a > 0 { // ERROR "Proved Greater64U$"
return 2
}
return 3
}
func f14(p, q *int, a []int) {
// This crazy ordering usually gives i1 the lowest value ID,
// j the middle value ID, and i2 the highest value ID.
// That used to confuse CSE because it ordered the args
// of the two + ops below differently.
// That in turn foiled bounds check elimination.
i1 := *p
j := *q
i2 := *p
useInt(a[i1+j])
useInt(a[i2+j]) // ERROR "Proved IsInBounds$"
}
func f15(s []int, x int) {
useSlice(s[x:])
useSlice(s[:x]) // ERROR "Proved IsSliceInBounds$"
}
func f16(s []int) []int {
if len(s) >= 10 {
return s[:10] // ERROR "Proved IsSliceInBounds$"
}
return nil
}
func f17(b []int) {
for i := 0; i < len(b); i++ { // ERROR "Induction variable: limits \[0,\?\), increment 1"
// This tests for i <= cap, which we can only prove
// using the derived relation between len and cap.
// This depends on finding the contradiction, since we
// don't query this condition directly.
useSlice(b[:i]) // ERROR "Proved IsSliceInBounds$"
}
}
func f18(b []int, x int, y uint) {
_ = b[x]
_ = b[y]
if x > len(b) { // ERROR "Disproved Greater64$"
return
}
if y > uint(len(b)) { // ERROR "Disproved Greater64U$"
return
}
if int(y) > len(b) { // ERROR "Disproved Greater64$"
return
}
}
func sm1(b []int, x int) {
// Test constant argument to slicemask.
useSlice(b[2:8]) // ERROR "Proved slicemask not needed$"
// Test non-constant argument with known limits.
if cap(b) > 10 {
useSlice(b[2:]) // ERROR "Proved slicemask not needed$"
}
}
func lim1(x, y, z int) {
// Test relations between signed and unsigned limits.
if x > 5 {
if uint(x) > 5 { // ERROR "Proved Greater64U$"
return
}
}
if y >= 0 && y < 4 {
if uint(y) > 4 { // ERROR "Disproved Greater64U$"
return
}
if uint(y) < 5 { // ERROR "Proved Less64U$"
return
}
}
if z < 4 {
if uint(z) > 4 { // Not provable without disjunctions.
return
}
}
}
// fence14 correspond to the four fence-post implications.
func fence1(b []int, x, y int) {
// Test proofs that rely on fence-post implications.
if x+1 > y {
if x < y { // ERROR "Disproved Less64$"
return
}
}
if len(b) < cap(b) {
// This eliminates the growslice path.
b = append(b, 1) // ERROR "Disproved Greater64$"
}
}
func fence2(x, y int) {
if x-1 < y {
if x > y { // ERROR "Disproved Greater64$"
return
}
}
}
func fence3(b []int, x, y int64) {
if x-1 >= y {
if x <= y { // Can't prove because x may have wrapped.
return
}
}
if x != math.MinInt64 && x-1 >= y {
if x <= y { // ERROR "Disproved Leq64$"
return
}
}
if n := len(b); n > 0 {
b[n-1] = 0 // ERROR "Proved IsInBounds$"
}
}
func fence4(x, y int64) {
if x >= y+1 {
if x <= y {
return
}
}
if y != math.MaxInt64 && x >= y+1 {
if x <= y { // ERROR "Disproved Leq64$"
return
}
}
}
// Check transitive relations
func trans1(x, y int64) {
if x > 5 {
if y > x {
if y > 2 { // ERROR "Proved Greater64"
return
}
} else if y == x {
if y > 5 { // ERROR "Proved Greater64"
return
}
}
}
if x >= 10 {
if y > x {
if y > 10 { // ERROR "Proved Greater64"
return
}
}
}
}
func trans2(a, b []int, i int) {
if len(a) != len(b) {
return
}
_ = a[i]
_ = b[i] // ERROR "Proved IsInBounds$"
}
func trans3(a, b []int, i int) {
if len(a) > len(b) {
return
}
_ = a[i]
_ = b[i] // ERROR "Proved IsInBounds$"
}
// Derived from nat.cmp
func natcmp(x, y []uint) (r int) {
m := len(x)
n := len(y)
if m != n || m == 0 {
return
}
i := m - 1
for i > 0 && // ERROR "Induction variable: limits \(0,\?\], increment -1"
x[i] == // ERROR "Proved IsInBounds$"
y[i] { // ERROR "Proved IsInBounds$"
i--
}
switch {
case x[i] < // todo, cannot prove this because it's dominated by i<=0 || x[i]==y[i]
y[i]: // ERROR "Proved IsInBounds$"
r = -1
case x[i] > // ERROR "Proved IsInBounds$"
y[i]: // ERROR "Proved IsInBounds$"
r = 1
}
return
}
func suffix(s, suffix string) bool {
// todo, we're still not able to drop the bound check here in the general case
return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
}
func constsuffix(s string) bool {
return suffix(s, "abc") // ERROR "Proved IsSliceInBounds$"
}
// oforuntil tests the pattern created by OFORUNTIL blocks. These are
// handled by addLocalInductiveFacts rather than findIndVar.
func oforuntil(b []int) {
i := 0
if len(b) > i {
top:
println(b[i]) // ERROR "Induction variable: limits \[0,\?\), increment 1$" "Proved IsInBounds$"
i++
if i < len(b) {
goto top
}
}
}
// The range tests below test the index variable of range loops.
// range1 compiles to the "efficiently indexable" form of a range loop.
func range1(b []int) {
for i, v := range b { // ERROR "Induction variable: limits \[0,\?\), increment 1$"
b[i] = v + 1 // ERROR "Proved IsInBounds$"
if i < len(b) { // ERROR "Proved Less64$"
println("x")
}
if i >= 0 { // ERROR "Proved Geq64$"
println("x")
}
}
}
// range2 elements are larger, so they use the general form of a range loop.
func range2(b [][32]int) {
for i, v := range b {
b[i][0] = v[0] + 1 // ERROR "Induction variable: limits \[0,\?\), increment 1$" "Proved IsInBounds$"
if i < len(b) { // ERROR "Proved Less64$"
println("x")
}
if i >= 0 { // ERROR "Proved Geq64"
println("x")
}
}
}
//go:noinline
func useInt(a int) {
}
//go:noinline
func useSlice(a []int) {
}
func main() {
}