mirror of
https://github.com/golang/go
synced 2024-11-14 23:40:35 -07:00
0da4dbe232
cmd and runtime were handled separately, and I'm intentionally skipped syscall. This is the rest of the standard library. CL generated mechanically with github.com/mdempsky/unconvert. Change-Id: I9e0eff886974dedc37adb93f602064b83e469122 Reviewed-on: https://go-review.googlesource.com/22104 Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org> Run-TryBot: Matthew Dempsky <mdempsky@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org>
669 lines
20 KiB
Go
669 lines
20 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package strconv
|
|
|
|
// An extFloat represents an extended floating-point number, with more
|
|
// precision than a float64. It does not try to save bits: the
|
|
// number represented by the structure is mant*(2^exp), with a negative
|
|
// sign if neg is true.
|
|
type extFloat struct {
|
|
mant uint64
|
|
exp int
|
|
neg bool
|
|
}
|
|
|
|
// Powers of ten taken from double-conversion library.
|
|
// http://code.google.com/p/double-conversion/
|
|
const (
|
|
firstPowerOfTen = -348
|
|
stepPowerOfTen = 8
|
|
)
|
|
|
|
var smallPowersOfTen = [...]extFloat{
|
|
{1 << 63, -63, false}, // 1
|
|
{0xa << 60, -60, false}, // 1e1
|
|
{0x64 << 57, -57, false}, // 1e2
|
|
{0x3e8 << 54, -54, false}, // 1e3
|
|
{0x2710 << 50, -50, false}, // 1e4
|
|
{0x186a0 << 47, -47, false}, // 1e5
|
|
{0xf4240 << 44, -44, false}, // 1e6
|
|
{0x989680 << 40, -40, false}, // 1e7
|
|
}
|
|
|
|
var powersOfTen = [...]extFloat{
|
|
{0xfa8fd5a0081c0288, -1220, false}, // 10^-348
|
|
{0xbaaee17fa23ebf76, -1193, false}, // 10^-340
|
|
{0x8b16fb203055ac76, -1166, false}, // 10^-332
|
|
{0xcf42894a5dce35ea, -1140, false}, // 10^-324
|
|
{0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
|
|
{0xe61acf033d1a45df, -1087, false}, // 10^-308
|
|
{0xab70fe17c79ac6ca, -1060, false}, // 10^-300
|
|
{0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
|
|
{0xbe5691ef416bd60c, -1007, false}, // 10^-284
|
|
{0x8dd01fad907ffc3c, -980, false}, // 10^-276
|
|
{0xd3515c2831559a83, -954, false}, // 10^-268
|
|
{0x9d71ac8fada6c9b5, -927, false}, // 10^-260
|
|
{0xea9c227723ee8bcb, -901, false}, // 10^-252
|
|
{0xaecc49914078536d, -874, false}, // 10^-244
|
|
{0x823c12795db6ce57, -847, false}, // 10^-236
|
|
{0xc21094364dfb5637, -821, false}, // 10^-228
|
|
{0x9096ea6f3848984f, -794, false}, // 10^-220
|
|
{0xd77485cb25823ac7, -768, false}, // 10^-212
|
|
{0xa086cfcd97bf97f4, -741, false}, // 10^-204
|
|
{0xef340a98172aace5, -715, false}, // 10^-196
|
|
{0xb23867fb2a35b28e, -688, false}, // 10^-188
|
|
{0x84c8d4dfd2c63f3b, -661, false}, // 10^-180
|
|
{0xc5dd44271ad3cdba, -635, false}, // 10^-172
|
|
{0x936b9fcebb25c996, -608, false}, // 10^-164
|
|
{0xdbac6c247d62a584, -582, false}, // 10^-156
|
|
{0xa3ab66580d5fdaf6, -555, false}, // 10^-148
|
|
{0xf3e2f893dec3f126, -529, false}, // 10^-140
|
|
{0xb5b5ada8aaff80b8, -502, false}, // 10^-132
|
|
{0x87625f056c7c4a8b, -475, false}, // 10^-124
|
|
{0xc9bcff6034c13053, -449, false}, // 10^-116
|
|
{0x964e858c91ba2655, -422, false}, // 10^-108
|
|
{0xdff9772470297ebd, -396, false}, // 10^-100
|
|
{0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92
|
|
{0xf8a95fcf88747d94, -343, false}, // 10^-84
|
|
{0xb94470938fa89bcf, -316, false}, // 10^-76
|
|
{0x8a08f0f8bf0f156b, -289, false}, // 10^-68
|
|
{0xcdb02555653131b6, -263, false}, // 10^-60
|
|
{0x993fe2c6d07b7fac, -236, false}, // 10^-52
|
|
{0xe45c10c42a2b3b06, -210, false}, // 10^-44
|
|
{0xaa242499697392d3, -183, false}, // 10^-36
|
|
{0xfd87b5f28300ca0e, -157, false}, // 10^-28
|
|
{0xbce5086492111aeb, -130, false}, // 10^-20
|
|
{0x8cbccc096f5088cc, -103, false}, // 10^-12
|
|
{0xd1b71758e219652c, -77, false}, // 10^-4
|
|
{0x9c40000000000000, -50, false}, // 10^4
|
|
{0xe8d4a51000000000, -24, false}, // 10^12
|
|
{0xad78ebc5ac620000, 3, false}, // 10^20
|
|
{0x813f3978f8940984, 30, false}, // 10^28
|
|
{0xc097ce7bc90715b3, 56, false}, // 10^36
|
|
{0x8f7e32ce7bea5c70, 83, false}, // 10^44
|
|
{0xd5d238a4abe98068, 109, false}, // 10^52
|
|
{0x9f4f2726179a2245, 136, false}, // 10^60
|
|
{0xed63a231d4c4fb27, 162, false}, // 10^68
|
|
{0xb0de65388cc8ada8, 189, false}, // 10^76
|
|
{0x83c7088e1aab65db, 216, false}, // 10^84
|
|
{0xc45d1df942711d9a, 242, false}, // 10^92
|
|
{0x924d692ca61be758, 269, false}, // 10^100
|
|
{0xda01ee641a708dea, 295, false}, // 10^108
|
|
{0xa26da3999aef774a, 322, false}, // 10^116
|
|
{0xf209787bb47d6b85, 348, false}, // 10^124
|
|
{0xb454e4a179dd1877, 375, false}, // 10^132
|
|
{0x865b86925b9bc5c2, 402, false}, // 10^140
|
|
{0xc83553c5c8965d3d, 428, false}, // 10^148
|
|
{0x952ab45cfa97a0b3, 455, false}, // 10^156
|
|
{0xde469fbd99a05fe3, 481, false}, // 10^164
|
|
{0xa59bc234db398c25, 508, false}, // 10^172
|
|
{0xf6c69a72a3989f5c, 534, false}, // 10^180
|
|
{0xb7dcbf5354e9bece, 561, false}, // 10^188
|
|
{0x88fcf317f22241e2, 588, false}, // 10^196
|
|
{0xcc20ce9bd35c78a5, 614, false}, // 10^204
|
|
{0x98165af37b2153df, 641, false}, // 10^212
|
|
{0xe2a0b5dc971f303a, 667, false}, // 10^220
|
|
{0xa8d9d1535ce3b396, 694, false}, // 10^228
|
|
{0xfb9b7cd9a4a7443c, 720, false}, // 10^236
|
|
{0xbb764c4ca7a44410, 747, false}, // 10^244
|
|
{0x8bab8eefb6409c1a, 774, false}, // 10^252
|
|
{0xd01fef10a657842c, 800, false}, // 10^260
|
|
{0x9b10a4e5e9913129, 827, false}, // 10^268
|
|
{0xe7109bfba19c0c9d, 853, false}, // 10^276
|
|
{0xac2820d9623bf429, 880, false}, // 10^284
|
|
{0x80444b5e7aa7cf85, 907, false}, // 10^292
|
|
{0xbf21e44003acdd2d, 933, false}, // 10^300
|
|
{0x8e679c2f5e44ff8f, 960, false}, // 10^308
|
|
{0xd433179d9c8cb841, 986, false}, // 10^316
|
|
{0x9e19db92b4e31ba9, 1013, false}, // 10^324
|
|
{0xeb96bf6ebadf77d9, 1039, false}, // 10^332
|
|
{0xaf87023b9bf0ee6b, 1066, false}, // 10^340
|
|
}
|
|
|
|
// floatBits returns the bits of the float64 that best approximates
|
|
// the extFloat passed as receiver. Overflow is set to true if
|
|
// the resulting float64 is ±Inf.
|
|
func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) {
|
|
f.Normalize()
|
|
|
|
exp := f.exp + 63
|
|
|
|
// Exponent too small.
|
|
if exp < flt.bias+1 {
|
|
n := flt.bias + 1 - exp
|
|
f.mant >>= uint(n)
|
|
exp += n
|
|
}
|
|
|
|
// Extract 1+flt.mantbits bits from the 64-bit mantissa.
|
|
mant := f.mant >> (63 - flt.mantbits)
|
|
if f.mant&(1<<(62-flt.mantbits)) != 0 {
|
|
// Round up.
|
|
mant += 1
|
|
}
|
|
|
|
// Rounding might have added a bit; shift down.
|
|
if mant == 2<<flt.mantbits {
|
|
mant >>= 1
|
|
exp++
|
|
}
|
|
|
|
// Infinities.
|
|
if exp-flt.bias >= 1<<flt.expbits-1 {
|
|
// ±Inf
|
|
mant = 0
|
|
exp = 1<<flt.expbits - 1 + flt.bias
|
|
overflow = true
|
|
} else if mant&(1<<flt.mantbits) == 0 {
|
|
// Denormalized?
|
|
exp = flt.bias
|
|
}
|
|
// Assemble bits.
|
|
bits = mant & (uint64(1)<<flt.mantbits - 1)
|
|
bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
|
|
if f.neg {
|
|
bits |= 1 << (flt.mantbits + flt.expbits)
|
|
}
|
|
return
|
|
}
|
|
|
|
// AssignComputeBounds sets f to the floating point value
|
|
// defined by mant, exp and precision given by flt. It returns
|
|
// lower, upper such that any number in the closed interval
|
|
// [lower, upper] is converted back to the same floating point number.
|
|
func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) {
|
|
f.mant = mant
|
|
f.exp = exp - int(flt.mantbits)
|
|
f.neg = neg
|
|
if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) {
|
|
// An exact integer
|
|
f.mant >>= uint(-f.exp)
|
|
f.exp = 0
|
|
return *f, *f
|
|
}
|
|
expBiased := exp - flt.bias
|
|
|
|
upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
|
|
if mant != 1<<flt.mantbits || expBiased == 1 {
|
|
lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
|
|
} else {
|
|
lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
|
|
}
|
|
return
|
|
}
|
|
|
|
// Normalize normalizes f so that the highest bit of the mantissa is
|
|
// set, and returns the number by which the mantissa was left-shifted.
|
|
func (f *extFloat) Normalize() (shift uint) {
|
|
mant, exp := f.mant, f.exp
|
|
if mant == 0 {
|
|
return 0
|
|
}
|
|
if mant>>(64-32) == 0 {
|
|
mant <<= 32
|
|
exp -= 32
|
|
}
|
|
if mant>>(64-16) == 0 {
|
|
mant <<= 16
|
|
exp -= 16
|
|
}
|
|
if mant>>(64-8) == 0 {
|
|
mant <<= 8
|
|
exp -= 8
|
|
}
|
|
if mant>>(64-4) == 0 {
|
|
mant <<= 4
|
|
exp -= 4
|
|
}
|
|
if mant>>(64-2) == 0 {
|
|
mant <<= 2
|
|
exp -= 2
|
|
}
|
|
if mant>>(64-1) == 0 {
|
|
mant <<= 1
|
|
exp -= 1
|
|
}
|
|
shift = uint(f.exp - exp)
|
|
f.mant, f.exp = mant, exp
|
|
return
|
|
}
|
|
|
|
// Multiply sets f to the product f*g: the result is correctly rounded,
|
|
// but not normalized.
|
|
func (f *extFloat) Multiply(g extFloat) {
|
|
fhi, flo := f.mant>>32, uint64(uint32(f.mant))
|
|
ghi, glo := g.mant>>32, uint64(uint32(g.mant))
|
|
|
|
// Cross products.
|
|
cross1 := fhi * glo
|
|
cross2 := flo * ghi
|
|
|
|
// f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo
|
|
f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32)
|
|
rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32)
|
|
// Round up.
|
|
rem += (1 << 31)
|
|
|
|
f.mant += (rem >> 32)
|
|
f.exp = f.exp + g.exp + 64
|
|
}
|
|
|
|
var uint64pow10 = [...]uint64{
|
|
1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
|
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
|
|
}
|
|
|
|
// AssignDecimal sets f to an approximate value mantissa*10^exp. It
|
|
// reports whether the value represented by f is guaranteed to be the
|
|
// best approximation of d after being rounded to a float64 or
|
|
// float32 depending on flt.
|
|
func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) {
|
|
const uint64digits = 19
|
|
const errorscale = 8
|
|
errors := 0 // An upper bound for error, computed in errorscale*ulp.
|
|
if trunc {
|
|
// the decimal number was truncated.
|
|
errors += errorscale / 2
|
|
}
|
|
|
|
f.mant = mantissa
|
|
f.exp = 0
|
|
f.neg = neg
|
|
|
|
// Multiply by powers of ten.
|
|
i := (exp10 - firstPowerOfTen) / stepPowerOfTen
|
|
if exp10 < firstPowerOfTen || i >= len(powersOfTen) {
|
|
return false
|
|
}
|
|
adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen
|
|
|
|
// We multiply by exp%step
|
|
if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] {
|
|
// We can multiply the mantissa exactly.
|
|
f.mant *= uint64pow10[adjExp]
|
|
f.Normalize()
|
|
} else {
|
|
f.Normalize()
|
|
f.Multiply(smallPowersOfTen[adjExp])
|
|
errors += errorscale / 2
|
|
}
|
|
|
|
// We multiply by 10 to the exp - exp%step.
|
|
f.Multiply(powersOfTen[i])
|
|
if errors > 0 {
|
|
errors += 1
|
|
}
|
|
errors += errorscale / 2
|
|
|
|
// Normalize
|
|
shift := f.Normalize()
|
|
errors <<= shift
|
|
|
|
// Now f is a good approximation of the decimal.
|
|
// Check whether the error is too large: that is, if the mantissa
|
|
// is perturbated by the error, the resulting float64 will change.
|
|
// The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits.
|
|
//
|
|
// In many cases the approximation will be good enough.
|
|
denormalExp := flt.bias - 63
|
|
var extrabits uint
|
|
if f.exp <= denormalExp {
|
|
// f.mant * 2^f.exp is smaller than 2^(flt.bias+1).
|
|
extrabits = 63 - flt.mantbits + 1 + uint(denormalExp-f.exp)
|
|
} else {
|
|
extrabits = 63 - flt.mantbits
|
|
}
|
|
|
|
halfway := uint64(1) << (extrabits - 1)
|
|
mant_extra := f.mant & (1<<extrabits - 1)
|
|
|
|
// Do a signed comparison here! If the error estimate could make
|
|
// the mantissa round differently for the conversion to double,
|
|
// then we can't give a definite answer.
|
|
if int64(halfway)-int64(errors) < int64(mant_extra) &&
|
|
int64(mant_extra) < int64(halfway)+int64(errors) {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Frexp10 is an analogue of math.Frexp for decimal powers. It scales
|
|
// f by an approximate power of ten 10^-exp, and returns exp10, so
|
|
// that f*10^exp10 has the same value as the old f, up to an ulp,
|
|
// as well as the index of 10^-exp in the powersOfTen table.
|
|
func (f *extFloat) frexp10() (exp10, index int) {
|
|
// The constants expMin and expMax constrain the final value of the
|
|
// binary exponent of f. We want a small integral part in the result
|
|
// because finding digits of an integer requires divisions, whereas
|
|
// digits of the fractional part can be found by repeatedly multiplying
|
|
// by 10.
|
|
const expMin = -60
|
|
const expMax = -32
|
|
// Find power of ten such that x * 10^n has a binary exponent
|
|
// between expMin and expMax.
|
|
approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28.
|
|
i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
|
|
Loop:
|
|
for {
|
|
exp := f.exp + powersOfTen[i].exp + 64
|
|
switch {
|
|
case exp < expMin:
|
|
i++
|
|
case exp > expMax:
|
|
i--
|
|
default:
|
|
break Loop
|
|
}
|
|
}
|
|
// Apply the desired decimal shift on f. It will have exponent
|
|
// in the desired range. This is multiplication by 10^-exp10.
|
|
f.Multiply(powersOfTen[i])
|
|
|
|
return -(firstPowerOfTen + i*stepPowerOfTen), i
|
|
}
|
|
|
|
// frexp10Many applies a common shift by a power of ten to a, b, c.
|
|
func frexp10Many(a, b, c *extFloat) (exp10 int) {
|
|
exp10, i := c.frexp10()
|
|
a.Multiply(powersOfTen[i])
|
|
b.Multiply(powersOfTen[i])
|
|
return
|
|
}
|
|
|
|
// FixedDecimal stores in d the first n significant digits
|
|
// of the decimal representation of f. It returns false
|
|
// if it cannot be sure of the answer.
|
|
func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool {
|
|
if f.mant == 0 {
|
|
d.nd = 0
|
|
d.dp = 0
|
|
d.neg = f.neg
|
|
return true
|
|
}
|
|
if n == 0 {
|
|
panic("strconv: internal error: extFloat.FixedDecimal called with n == 0")
|
|
}
|
|
// Multiply by an appropriate power of ten to have a reasonable
|
|
// number to process.
|
|
f.Normalize()
|
|
exp10, _ := f.frexp10()
|
|
|
|
shift := uint(-f.exp)
|
|
integer := uint32(f.mant >> shift)
|
|
fraction := f.mant - (uint64(integer) << shift)
|
|
ε := uint64(1) // ε is the uncertainty we have on the mantissa of f.
|
|
|
|
// Write exactly n digits to d.
|
|
needed := n // how many digits are left to write.
|
|
integerDigits := 0 // the number of decimal digits of integer.
|
|
pow10 := uint64(1) // the power of ten by which f was scaled.
|
|
for i, pow := 0, uint64(1); i < 20; i++ {
|
|
if pow > uint64(integer) {
|
|
integerDigits = i
|
|
break
|
|
}
|
|
pow *= 10
|
|
}
|
|
rest := integer
|
|
if integerDigits > needed {
|
|
// the integral part is already large, trim the last digits.
|
|
pow10 = uint64pow10[integerDigits-needed]
|
|
integer /= uint32(pow10)
|
|
rest -= integer * uint32(pow10)
|
|
} else {
|
|
rest = 0
|
|
}
|
|
|
|
// Write the digits of integer: the digits of rest are omitted.
|
|
var buf [32]byte
|
|
pos := len(buf)
|
|
for v := integer; v > 0; {
|
|
v1 := v / 10
|
|
v -= 10 * v1
|
|
pos--
|
|
buf[pos] = byte(v + '0')
|
|
v = v1
|
|
}
|
|
for i := pos; i < len(buf); i++ {
|
|
d.d[i-pos] = buf[i]
|
|
}
|
|
nd := len(buf) - pos
|
|
d.nd = nd
|
|
d.dp = integerDigits + exp10
|
|
needed -= nd
|
|
|
|
if needed > 0 {
|
|
if rest != 0 || pow10 != 1 {
|
|
panic("strconv: internal error, rest != 0 but needed > 0")
|
|
}
|
|
// Emit digits for the fractional part. Each time, 10*fraction
|
|
// fits in a uint64 without overflow.
|
|
for needed > 0 {
|
|
fraction *= 10
|
|
ε *= 10 // the uncertainty scales as we multiply by ten.
|
|
if 2*ε > 1<<shift {
|
|
// the error is so large it could modify which digit to write, abort.
|
|
return false
|
|
}
|
|
digit := fraction >> shift
|
|
d.d[nd] = byte(digit + '0')
|
|
fraction -= digit << shift
|
|
nd++
|
|
needed--
|
|
}
|
|
d.nd = nd
|
|
}
|
|
|
|
// We have written a truncation of f (a numerator / 10^d.dp). The remaining part
|
|
// can be interpreted as a small number (< 1) to be added to the last digit of the
|
|
// numerator.
|
|
//
|
|
// If rest > 0, the amount is:
|
|
// (rest<<shift | fraction) / (pow10 << shift)
|
|
// fraction being known with a ±ε uncertainty.
|
|
// The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64.
|
|
//
|
|
// If rest = 0, pow10 == 1 and the amount is
|
|
// fraction / (1 << shift)
|
|
// fraction being known with a ±ε uncertainty.
|
|
//
|
|
// We pass this information to the rounding routine for adjustment.
|
|
|
|
ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε)
|
|
if !ok {
|
|
return false
|
|
}
|
|
// Trim trailing zeros.
|
|
for i := d.nd - 1; i >= 0; i-- {
|
|
if d.d[i] != '0' {
|
|
d.nd = i + 1
|
|
break
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// adjustLastDigitFixed assumes d contains the representation of the integral part
|
|
// of some number, whose fractional part is num / (den << shift). The numerator
|
|
// num is only known up to an uncertainty of size ε, assumed to be less than
|
|
// (den << shift)/2.
|
|
//
|
|
// It will increase the last digit by one to account for correct rounding, typically
|
|
// when the fractional part is greater than 1/2, and will return false if ε is such
|
|
// that no correct answer can be given.
|
|
func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool {
|
|
if num > den<<shift {
|
|
panic("strconv: num > den<<shift in adjustLastDigitFixed")
|
|
}
|
|
if 2*ε > den<<shift {
|
|
panic("strconv: ε > (den<<shift)/2")
|
|
}
|
|
if 2*(num+ε) < den<<shift {
|
|
return true
|
|
}
|
|
if 2*(num-ε) > den<<shift {
|
|
// increment d by 1.
|
|
i := d.nd - 1
|
|
for ; i >= 0; i-- {
|
|
if d.d[i] == '9' {
|
|
d.nd--
|
|
} else {
|
|
break
|
|
}
|
|
}
|
|
if i < 0 {
|
|
d.d[0] = '1'
|
|
d.nd = 1
|
|
d.dp++
|
|
} else {
|
|
d.d[i]++
|
|
}
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// ShortestDecimal stores in d the shortest decimal representation of f
|
|
// which belongs to the open interval (lower, upper), where f is supposed
|
|
// to lie. It returns false whenever the result is unsure. The implementation
|
|
// uses the Grisu3 algorithm.
|
|
func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool {
|
|
if f.mant == 0 {
|
|
d.nd = 0
|
|
d.dp = 0
|
|
d.neg = f.neg
|
|
return true
|
|
}
|
|
if f.exp == 0 && *lower == *f && *lower == *upper {
|
|
// an exact integer.
|
|
var buf [24]byte
|
|
n := len(buf) - 1
|
|
for v := f.mant; v > 0; {
|
|
v1 := v / 10
|
|
v -= 10 * v1
|
|
buf[n] = byte(v + '0')
|
|
n--
|
|
v = v1
|
|
}
|
|
nd := len(buf) - n - 1
|
|
for i := 0; i < nd; i++ {
|
|
d.d[i] = buf[n+1+i]
|
|
}
|
|
d.nd, d.dp = nd, nd
|
|
for d.nd > 0 && d.d[d.nd-1] == '0' {
|
|
d.nd--
|
|
}
|
|
if d.nd == 0 {
|
|
d.dp = 0
|
|
}
|
|
d.neg = f.neg
|
|
return true
|
|
}
|
|
upper.Normalize()
|
|
// Uniformize exponents.
|
|
if f.exp > upper.exp {
|
|
f.mant <<= uint(f.exp - upper.exp)
|
|
f.exp = upper.exp
|
|
}
|
|
if lower.exp > upper.exp {
|
|
lower.mant <<= uint(lower.exp - upper.exp)
|
|
lower.exp = upper.exp
|
|
}
|
|
|
|
exp10 := frexp10Many(lower, f, upper)
|
|
// Take a safety margin due to rounding in frexp10Many, but we lose precision.
|
|
upper.mant++
|
|
lower.mant--
|
|
|
|
// The shortest representation of f is either rounded up or down, but
|
|
// in any case, it is a truncation of upper.
|
|
shift := uint(-upper.exp)
|
|
integer := uint32(upper.mant >> shift)
|
|
fraction := upper.mant - (uint64(integer) << shift)
|
|
|
|
// How far we can go down from upper until the result is wrong.
|
|
allowance := upper.mant - lower.mant
|
|
// How far we should go to get a very precise result.
|
|
targetDiff := upper.mant - f.mant
|
|
|
|
// Count integral digits: there are at most 10.
|
|
var integerDigits int
|
|
for i, pow := 0, uint64(1); i < 20; i++ {
|
|
if pow > uint64(integer) {
|
|
integerDigits = i
|
|
break
|
|
}
|
|
pow *= 10
|
|
}
|
|
for i := 0; i < integerDigits; i++ {
|
|
pow := uint64pow10[integerDigits-i-1]
|
|
digit := integer / uint32(pow)
|
|
d.d[i] = byte(digit + '0')
|
|
integer -= digit * uint32(pow)
|
|
// evaluate whether we should stop.
|
|
if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance {
|
|
d.nd = i + 1
|
|
d.dp = integerDigits + exp10
|
|
d.neg = f.neg
|
|
// Sometimes allowance is so large the last digit might need to be
|
|
// decremented to get closer to f.
|
|
return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2)
|
|
}
|
|
}
|
|
d.nd = integerDigits
|
|
d.dp = d.nd + exp10
|
|
d.neg = f.neg
|
|
|
|
// Compute digits of the fractional part. At each step fraction does not
|
|
// overflow. The choice of minExp implies that fraction is less than 2^60.
|
|
var digit int
|
|
multiplier := uint64(1)
|
|
for {
|
|
fraction *= 10
|
|
multiplier *= 10
|
|
digit = int(fraction >> shift)
|
|
d.d[d.nd] = byte(digit + '0')
|
|
d.nd++
|
|
fraction -= uint64(digit) << shift
|
|
if fraction < allowance*multiplier {
|
|
// We are in the admissible range. Note that if allowance is about to
|
|
// overflow, that is, allowance > 2^64/10, the condition is automatically
|
|
// true due to the limited range of fraction.
|
|
return adjustLastDigit(d,
|
|
fraction, targetDiff*multiplier, allowance*multiplier,
|
|
1<<shift, multiplier*2)
|
|
}
|
|
}
|
|
}
|
|
|
|
// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to
|
|
// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
|
|
// It assumes that a decimal digit is worth ulpDecimal*ε, and that
|
|
// all data is known with a error estimate of ulpBinary*ε.
|
|
func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
|
|
if ulpDecimal < 2*ulpBinary {
|
|
// Approximation is too wide.
|
|
return false
|
|
}
|
|
for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
|
|
d.d[d.nd-1]--
|
|
currentDiff += ulpDecimal
|
|
}
|
|
if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
|
|
// we have two choices, and don't know what to do.
|
|
return false
|
|
}
|
|
if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
|
|
// we went too far
|
|
return false
|
|
}
|
|
if d.nd == 1 && d.d[0] == '0' {
|
|
// the number has actually reached zero.
|
|
d.nd = 0
|
|
d.dp = 0
|
|
}
|
|
return true
|
|
}
|