1
0
mirror of https://github.com/golang/go synced 2024-11-19 01:14:39 -07:00
go/internal/lsp/source/analysis.go
Michael Matloob 340a1cdb50 internal/lsp: copy fact support from go/analysis/internal/checker.go
This changes the analysis code from that which was in unitchecker.go
to that in checker.go, so we can run actions that get facts for dependencies
concurrently.

Adds the rest of the traditional vet suite to the LSP.

TODO(matloob): test that facts are actually propagated between packages

Change-Id: I946082159777943af81bcf10e503fecc99da521e
Reviewed-on: https://go-review.googlesource.com/c/161671
Run-TryBot: Michael Matloob <matloob@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2019-02-12 19:58:15 +00:00

326 lines
9.2 KiB
Go

// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file is largely based on go/analysis/internal/checker/checker.go.
package source
import (
"fmt"
"go/types"
"log"
"reflect"
"sort"
"strings"
"sync"
"time"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/packages"
)
// AnalysisCache holds analysis information for all the packages in a view.
type AnalysisCache struct {
m map[analysisKey]*action
}
func NewAnalysisCache() *AnalysisCache {
return &AnalysisCache{make(map[analysisKey]*action)}
}
// Each graph node (action) is one unit of analysis.
// Edges express package-to-package (vertical) dependencies,
// and analysis-to-analysis (horizontal) dependencies.
type analysisKey struct {
*analysis.Analyzer
*packages.Package
}
func (c *AnalysisCache) analyze(pkgs []*packages.Package, analyzers []*analysis.Analyzer) []*action {
// TODO(matloob): Every time but the first, this needs to re-construct
// the invalidated parts of the action graph, probably under a lock?
// We'll take care of that later. For now, clear the entire cache!
for k := range c.m {
delete(c.m, k)
}
// Construct the action graph.
var mkAction func(a *analysis.Analyzer, pkg *packages.Package) *action
mkAction = func(a *analysis.Analyzer, pkg *packages.Package) *action {
k := analysisKey{a, pkg}
act, ok := c.m[k]
if !ok {
act = &action{a: a, pkg: pkg}
// Add a dependency on each required analyzers.
for _, req := range a.Requires {
act.deps = append(act.deps, mkAction(req, pkg))
}
// An analysis that consumes/produces facts
// must run on the package's dependencies too.
if len(a.FactTypes) > 0 {
paths := make([]string, 0, len(pkg.Imports))
for path := range pkg.Imports {
paths = append(paths, path)
}
sort.Strings(paths) // for determinism
for _, path := range paths {
dep := mkAction(a, pkg.Imports[path])
act.deps = append(act.deps, dep)
}
}
c.m[k] = act
}
return act
}
// Build nodes for initial packages.
var roots []*action
for _, a := range analyzers {
for _, pkg := range pkgs {
root := mkAction(a, pkg)
root.isroot = true
roots = append(roots, root)
}
}
// Execute the graph in parallel.
execAll(roots)
return roots
}
// An action represents one unit of analysis work: the application of
// one analysis to one package. Actions form a DAG, both within a
// package (as different analyzers are applied, either in sequence or
// parallel), and across packages (as dependencies are analyzed).
type action struct {
once sync.Once
a *analysis.Analyzer
pkg *packages.Package
pass *analysis.Pass
isroot bool
deps []*action
objectFacts map[objectFactKey]analysis.Fact
packageFacts map[packageFactKey]analysis.Fact
inputs map[*analysis.Analyzer]interface{}
result interface{}
diagnostics []analysis.Diagnostic
err error
duration time.Duration
}
type objectFactKey struct {
obj types.Object
typ reflect.Type
}
type packageFactKey struct {
pkg *types.Package
typ reflect.Type
}
func (act *action) String() string {
return fmt.Sprintf("%s@%s", act.a, act.pkg)
}
func execAll(actions []*action) {
var wg sync.WaitGroup
for _, act := range actions {
wg.Add(1)
work := func(act *action) {
act.exec()
wg.Done()
}
go work(act)
}
wg.Wait()
}
func (act *action) exec() { act.once.Do(act.execOnce) }
func (act *action) execOnce() {
// Analyze dependencies.
execAll(act.deps)
// Report an error if any dependency failed.
var failed []string
for _, dep := range act.deps {
if dep.err != nil {
failed = append(failed, dep.String())
}
}
if failed != nil {
sort.Strings(failed)
act.err = fmt.Errorf("failed prerequisites: %s", strings.Join(failed, ", "))
return
}
// Plumb the output values of the dependencies
// into the inputs of this action. Also facts.
inputs := make(map[*analysis.Analyzer]interface{})
act.objectFacts = make(map[objectFactKey]analysis.Fact)
act.packageFacts = make(map[packageFactKey]analysis.Fact)
for _, dep := range act.deps {
if dep.pkg == act.pkg {
// Same package, different analysis (horizontal edge):
// in-memory outputs of prerequisite analyzers
// become inputs to this analysis pass.
inputs[dep.a] = dep.result
} else if dep.a == act.a { // (always true)
// Same analysis, different package (vertical edge):
// serialized facts produced by prerequisite analysis
// become available to this analysis pass.
inheritFacts(act, dep)
}
}
// Run the analysis.
pass := &analysis.Pass{
Analyzer: act.a,
Fset: act.pkg.Fset,
Files: act.pkg.Syntax,
OtherFiles: act.pkg.OtherFiles,
Pkg: act.pkg.Types,
TypesInfo: act.pkg.TypesInfo,
TypesSizes: act.pkg.TypesSizes,
ResultOf: inputs,
Report: func(d analysis.Diagnostic) { act.diagnostics = append(act.diagnostics, d) },
ImportObjectFact: act.importObjectFact,
ExportObjectFact: act.exportObjectFact,
ImportPackageFact: act.importPackageFact,
ExportPackageFact: act.exportPackageFact,
}
act.pass = pass
var err error
if act.pkg.IllTyped && !pass.Analyzer.RunDespiteErrors {
err = fmt.Errorf("analysis skipped due to errors in package")
} else {
act.result, err = pass.Analyzer.Run(pass)
if err == nil {
if got, want := reflect.TypeOf(act.result), pass.Analyzer.ResultType; got != want {
err = fmt.Errorf(
"internal error: on package %s, analyzer %s returned a result of type %v, but declared ResultType %v",
pass.Pkg.Path(), pass.Analyzer, got, want)
}
}
}
act.err = err
// disallow calls after Run
pass.ExportObjectFact = nil
pass.ExportPackageFact = nil
}
// inheritFacts populates act.facts with
// those it obtains from its dependency, dep.
func inheritFacts(act, dep *action) {
for key, fact := range dep.objectFacts {
// Filter out facts related to objects
// that are irrelevant downstream
// (equivalently: not in the compiler export data).
if !exportedFrom(key.obj, dep.pkg.Types) {
continue
}
act.objectFacts[key] = fact
}
for key, fact := range dep.packageFacts {
// TODO: filter out facts that belong to
// packages not mentioned in the export data
// to prevent side channels.
act.packageFacts[key] = fact
}
}
// exportedFrom reports whether obj may be visible to a package that imports pkg.
// This includes not just the exported members of pkg, but also unexported
// constants, types, fields, and methods, perhaps belonging to oether packages,
// that find there way into the API.
// This is an overapproximation of the more accurate approach used by
// gc export data, which walks the type graph, but it's much simpler.
//
// TODO(adonovan): do more accurate filtering by walking the type graph.
func exportedFrom(obj types.Object, pkg *types.Package) bool {
switch obj := obj.(type) {
case *types.Func:
return obj.Exported() && obj.Pkg() == pkg ||
obj.Type().(*types.Signature).Recv() != nil
case *types.Var:
return obj.Exported() && obj.Pkg() == pkg ||
obj.IsField()
case *types.TypeName, *types.Const:
return true
}
return false // Nil, Builtin, Label, or PkgName
}
// importObjectFact implements Pass.ImportObjectFact.
// Given a non-nil pointer ptr of type *T, where *T satisfies Fact,
// importObjectFact copies the fact value to *ptr.
func (act *action) importObjectFact(obj types.Object, ptr analysis.Fact) bool {
if obj == nil {
panic("nil object")
}
key := objectFactKey{obj, factType(ptr)}
if v, ok := act.objectFacts[key]; ok {
reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem())
return true
}
return false
}
// exportObjectFact implements Pass.ExportObjectFact.
func (act *action) exportObjectFact(obj types.Object, fact analysis.Fact) {
if act.pass.ExportObjectFact == nil {
log.Panicf("%s: Pass.ExportObjectFact(%s, %T) called after Run", act, obj, fact)
}
if obj.Pkg() != act.pkg.Types {
log.Panicf("internal error: in analysis %s of package %s: Fact.Set(%s, %T): can't set facts on objects belonging another package",
act.a, act.pkg, obj, fact)
}
key := objectFactKey{obj, factType(fact)}
act.objectFacts[key] = fact // clobber any existing entry
}
// importPackageFact implements Pass.ImportPackageFact.
// Given a non-nil pointer ptr of type *T, where *T satisfies Fact,
// fact copies the fact value to *ptr.
func (act *action) importPackageFact(pkg *types.Package, ptr analysis.Fact) bool {
if pkg == nil {
panic("nil package")
}
key := packageFactKey{pkg, factType(ptr)}
if v, ok := act.packageFacts[key]; ok {
reflect.ValueOf(ptr).Elem().Set(reflect.ValueOf(v).Elem())
return true
}
return false
}
// exportPackageFact implements Pass.ExportPackageFact.
func (act *action) exportPackageFact(fact analysis.Fact) {
if act.pass.ExportPackageFact == nil {
log.Panicf("%s: Pass.ExportPackageFact(%T) called after Run", act, fact)
}
key := packageFactKey{act.pass.Pkg, factType(fact)}
act.packageFacts[key] = fact // clobber any existing entry
}
func factType(fact analysis.Fact) reflect.Type {
t := reflect.TypeOf(fact)
if t.Kind() != reflect.Ptr {
log.Fatalf("invalid Fact type: got %T, want pointer", t)
}
return t
}