1
0
mirror of https://github.com/golang/go synced 2024-11-26 10:58:16 -07:00
go/test/map.go
Alan Donovan 052c942e20 test: ensure all failing tests exit nonzero.
Previously merely printing an error would cause the golden
file comparison (in 'bash run') to fail, but that is no longer
the case with the new run.go driver.

R=iant
CC=golang-dev
https://golang.org/cl/7310087
2013-02-12 13:17:49 -05:00

698 lines
15 KiB
Go

// run
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Test maps, almost exhaustively.
package main
import (
"fmt"
"math"
"strconv"
"time"
)
const count = 100
func P(a []string) string {
s := "{"
for i := 0; i < len(a); i++ {
if i > 0 {
s += ","
}
s += `"` + a[i] + `"`
}
s += "}"
return s
}
func main() {
testbasic()
testfloat()
testnan()
}
func testbasic() {
// Test a map literal.
mlit := map[string]int{"0": 0, "1": 1, "2": 2, "3": 3, "4": 4}
for i := 0; i < len(mlit); i++ {
s := string([]byte{byte(i) + '0'})
if mlit[s] != i {
panic(fmt.Sprintf("mlit[%s] = %d\n", s, mlit[s]))
}
}
mib := make(map[int]bool)
mii := make(map[int]int)
mfi := make(map[float32]int)
mif := make(map[int]float32)
msi := make(map[string]int)
mis := make(map[int]string)
mss := make(map[string]string)
mspa := make(map[string][]string)
// BUG need an interface map both ways too
type T struct {
i int64 // can't use string here; struct values are only compared at the top level
f float32
}
mipT := make(map[int]*T)
mpTi := make(map[*T]int)
mit := make(map[int]T)
// mti := make(map[T] int)
type M map[int]int
mipM := make(map[int]M)
var apT [2 * count]*T
for i := 0; i < count; i++ {
s := strconv.Itoa(i)
s10 := strconv.Itoa(i * 10)
f := float32(i)
t := T{int64(i), f}
apT[i] = new(T)
apT[i].i = int64(i)
apT[i].f = f
apT[2*i] = new(T) // need twice as many entries as we use, for the nonexistence check
apT[2*i].i = int64(i)
apT[2*i].f = f
m := M{i: i + 1}
mib[i] = (i != 0)
mii[i] = 10 * i
mfi[float32(i)] = 10 * i
mif[i] = 10.0 * f
mis[i] = s
msi[s] = i
mss[s] = s10
mss[s] = s10
as := make([]string, 2)
as[0] = s10
as[1] = s10
mspa[s] = as
mipT[i] = apT[i]
mpTi[apT[i]] = i
mipM[i] = m
mit[i] = t
// mti[t] = i
}
// test len
if len(mib) != count {
panic(fmt.Sprintf("len(mib) = %d\n", len(mib)))
}
if len(mii) != count {
panic(fmt.Sprintf("len(mii) = %d\n", len(mii)))
}
if len(mfi) != count {
panic(fmt.Sprintf("len(mfi) = %d\n", len(mfi)))
}
if len(mif) != count {
panic(fmt.Sprintf("len(mif) = %d\n", len(mif)))
}
if len(msi) != count {
panic(fmt.Sprintf("len(msi) = %d\n", len(msi)))
}
if len(mis) != count {
panic(fmt.Sprintf("len(mis) = %d\n", len(mis)))
}
if len(mss) != count {
panic(fmt.Sprintf("len(mss) = %d\n", len(mss)))
}
if len(mspa) != count {
panic(fmt.Sprintf("len(mspa) = %d\n", len(mspa)))
}
if len(mipT) != count {
panic(fmt.Sprintf("len(mipT) = %d\n", len(mipT)))
}
if len(mpTi) != count {
panic(fmt.Sprintf("len(mpTi) = %d\n", len(mpTi)))
}
// if len(mti) != count {
// panic(fmt.Sprintf("len(mti) = %d\n", len(mti)))
// }
if len(mipM) != count {
panic(fmt.Sprintf("len(mipM) = %d\n", len(mipM)))
}
// if len(mti) != count {
// panic(fmt.Sprintf("len(mti) = %d\n", len(mti)))
// }
if len(mit) != count {
panic(fmt.Sprintf("len(mit) = %d\n", len(mit)))
}
// test construction directly
for i := 0; i < count; i++ {
s := strconv.Itoa(i)
s10 := strconv.Itoa(i * 10)
f := float32(i)
// BUG m := M(i, i+1)
if mib[i] != (i != 0) {
panic(fmt.Sprintf("mib[%d] = %t\n", i, mib[i]))
}
if mii[i] != 10*i {
panic(fmt.Sprintf("mii[%d] = %d\n", i, mii[i]))
}
if mfi[f] != 10*i {
panic(fmt.Sprintf("mfi[%d] = %d\n", i, mfi[f]))
}
if mif[i] != 10.0*f {
panic(fmt.Sprintf("mif[%d] = %g\n", i, mif[i]))
}
if mis[i] != s {
panic(fmt.Sprintf("mis[%d] = %s\n", i, mis[i]))
}
if msi[s] != i {
panic(fmt.Sprintf("msi[%s] = %d\n", s, msi[s]))
}
if mss[s] != s10 {
panic(fmt.Sprintf("mss[%s] = %g\n", s, mss[s]))
}
for j := 0; j < len(mspa[s]); j++ {
if mspa[s][j] != s10 {
panic(fmt.Sprintf("mspa[%s][%d] = %s\n", s, j, mspa[s][j]))
}
}
if mipT[i].i != int64(i) || mipT[i].f != f {
panic(fmt.Sprintf("mipT[%d] = %v\n", i, mipT[i]))
}
if mpTi[apT[i]] != i {
panic(fmt.Sprintf("mpTi[apT[%d]] = %d\n", i, mpTi[apT[i]]))
}
// if(mti[t] != i) {
// panic(fmt.Sprintf("mti[%s] = %s\n", s, mti[t]))
// }
if mipM[i][i] != i+1 {
panic(fmt.Sprintf("mipM[%d][%d] = %d\n", i, i, mipM[i][i]))
}
// if(mti[t] != i) {
// panic(fmt.Sprintf("mti[%v] = %d\n", t, mti[t]))
// }
if mit[i].i != int64(i) || mit[i].f != f {
panic(fmt.Sprintf("mit[%d] = {%d %g}\n", i, mit[i].i, mit[i].f))
}
}
// test existence with tuple check
// failed lookups yield a false value for the boolean.
for i := 0; i < count; i++ {
s := strconv.Itoa(i)
f := float32(i)
{
_, b := mib[i]
if !b {
panic(fmt.Sprintf("tuple existence decl: mib[%d]\n", i))
}
_, b = mib[i]
if !b {
panic(fmt.Sprintf("tuple existence assign: mib[%d]\n", i))
}
}
{
_, b := mii[i]
if !b {
panic(fmt.Sprintf("tuple existence decl: mii[%d]\n", i))
}
_, b = mii[i]
if !b {
panic(fmt.Sprintf("tuple existence assign: mii[%d]\n", i))
}
}
{
_, b := mfi[f]
if !b {
panic(fmt.Sprintf("tuple existence decl: mfi[%d]\n", i))
}
_, b = mfi[f]
if !b {
panic(fmt.Sprintf("tuple existence assign: mfi[%d]\n", i))
}
}
{
_, b := mif[i]
if !b {
panic(fmt.Sprintf("tuple existence decl: mif[%d]\n", i))
}
_, b = mif[i]
if !b {
panic(fmt.Sprintf("tuple existence assign: mif[%d]\n", i))
}
}
{
_, b := mis[i]
if !b {
panic(fmt.Sprintf("tuple existence decl: mis[%d]\n", i))
}
_, b = mis[i]
if !b {
panic(fmt.Sprintf("tuple existence assign: mis[%d]\n", i))
}
}
{
_, b := msi[s]
if !b {
panic(fmt.Sprintf("tuple existence decl: msi[%d]\n", i))
}
_, b = msi[s]
if !b {
panic(fmt.Sprintf("tuple existence assign: msi[%d]\n", i))
}
}
{
_, b := mss[s]
if !b {
panic(fmt.Sprintf("tuple existence decl: mss[%d]\n", i))
}
_, b = mss[s]
if !b {
panic(fmt.Sprintf("tuple existence assign: mss[%d]\n", i))
}
}
{
_, b := mspa[s]
if !b {
panic(fmt.Sprintf("tuple existence decl: mspa[%d]\n", i))
}
_, b = mspa[s]
if !b {
panic(fmt.Sprintf("tuple existence assign: mspa[%d]\n", i))
}
}
{
_, b := mipT[i]
if !b {
panic(fmt.Sprintf("tuple existence decl: mipT[%d]\n", i))
}
_, b = mipT[i]
if !b {
panic(fmt.Sprintf("tuple existence assign: mipT[%d]\n", i))
}
}
{
_, b := mpTi[apT[i]]
if !b {
panic(fmt.Sprintf("tuple existence decl: mpTi[apT[%d]]\n", i))
}
_, b = mpTi[apT[i]]
if !b {
panic(fmt.Sprintf("tuple existence assign: mpTi[apT[%d]]\n", i))
}
}
{
_, b := mipM[i]
if !b {
panic(fmt.Sprintf("tuple existence decl: mipM[%d]\n", i))
}
_, b = mipM[i]
if !b {
panic(fmt.Sprintf("tuple existence assign: mipM[%d]\n", i))
}
}
{
_, b := mit[i]
if !b {
panic(fmt.Sprintf("tuple existence decl: mit[%d]\n", i))
}
_, b = mit[i]
if !b {
panic(fmt.Sprintf("tuple existence assign: mit[%d]\n", i))
}
}
// {
// _, b := mti[t]
// if !b {
// panic(fmt.Sprintf("tuple existence decl: mti[%d]\n", i))
// }
// _, b = mti[t]
// if !b {
// panic(fmt.Sprintf("tuple existence assign: mti[%d]\n", i))
// }
// }
}
// test nonexistence with tuple check
// failed lookups yield a false value for the boolean.
for i := count; i < 2*count; i++ {
s := strconv.Itoa(i)
f := float32(i)
{
_, b := mib[i]
if b {
panic(fmt.Sprintf("tuple nonexistence decl: mib[%d]", i))
}
_, b = mib[i]
if b {
panic(fmt.Sprintf("tuple nonexistence assign: mib[%d]", i))
}
}
{
_, b := mii[i]
if b {
panic(fmt.Sprintf("tuple nonexistence decl: mii[%d]", i))
}
_, b = mii[i]
if b {
panic(fmt.Sprintf("tuple nonexistence assign: mii[%d]", i))
}
}
{
_, b := mfi[f]
if b {
panic(fmt.Sprintf("tuple nonexistence decl: mfi[%d]", i))
}
_, b = mfi[f]
if b {
panic(fmt.Sprintf("tuple nonexistence assign: mfi[%d]", i))
}
}
{
_, b := mif[i]
if b {
panic(fmt.Sprintf("tuple nonexistence decl: mif[%d]", i))
}
_, b = mif[i]
if b {
panic(fmt.Sprintf("tuple nonexistence assign: mif[%d]", i))
}
}
{
_, b := mis[i]
if b {
panic(fmt.Sprintf("tuple nonexistence decl: mis[%d]", i))
}
_, b = mis[i]
if b {
panic(fmt.Sprintf("tuple nonexistence assign: mis[%d]", i))
}
}
{
_, b := msi[s]
if b {
panic(fmt.Sprintf("tuple nonexistence decl: msi[%d]", i))
}
_, b = msi[s]
if b {
panic(fmt.Sprintf("tuple nonexistence assign: msi[%d]", i))
}
}
{
_, b := mss[s]
if b {
panic(fmt.Sprintf("tuple nonexistence decl: mss[%d]", i))
}
_, b = mss[s]
if b {
panic(fmt.Sprintf("tuple nonexistence assign: mss[%d]", i))
}
}
{
_, b := mspa[s]
if b {
panic(fmt.Sprintf("tuple nonexistence decl: mspa[%d]", i))
}
_, b = mspa[s]
if b {
panic(fmt.Sprintf("tuple nonexistence assign: mspa[%d]", i))
}
}
{
_, b := mipT[i]
if b {
panic(fmt.Sprintf("tuple nonexistence decl: mipT[%d]", i))
}
_, b = mipT[i]
if b {
panic(fmt.Sprintf("tuple nonexistence assign: mipT[%d]", i))
}
}
{
_, b := mpTi[apT[i]]
if b {
panic(fmt.Sprintf("tuple nonexistence decl: mpTi[apt[%d]]", i))
}
_, b = mpTi[apT[i]]
if b {
panic(fmt.Sprintf("tuple nonexistence assign: mpTi[apT[%d]]", i))
}
}
{
_, b := mipM[i]
if b {
panic(fmt.Sprintf("tuple nonexistence decl: mipM[%d]", i))
}
_, b = mipM[i]
if b {
panic(fmt.Sprintf("tuple nonexistence assign: mipM[%d]", i))
}
}
// {
// _, b := mti[t]
// if b {
// panic(fmt.Sprintf("tuple nonexistence decl: mti[%d]", i))
// }
// _, b = mti[t]
// if b {
// panic(fmt.Sprintf("tuple nonexistence assign: mti[%d]", i))
// }
// }
{
_, b := mit[i]
if b {
panic(fmt.Sprintf("tuple nonexistence decl: mit[%d]", i))
}
_, b = mit[i]
if b {
panic(fmt.Sprintf("tuple nonexistence assign: mit[%d]", i))
}
}
}
// tests for structured map element updates
for i := 0; i < count; i++ {
s := strconv.Itoa(i)
mspa[s][i%2] = "deleted"
if mspa[s][i%2] != "deleted" {
panic(fmt.Sprintf("update mspa[%s][%d] = %s\n", s, i%2, mspa[s][i%2]))
}
mipT[i].i += 1
if mipT[i].i != int64(i)+1 {
panic(fmt.Sprintf("update mipT[%d].i = %d\n", i, mipT[i].i))
}
mipT[i].f = float32(i + 1)
if mipT[i].f != float32(i+1) {
panic(fmt.Sprintf("update mipT[%d].f = %g\n", i, mipT[i].f))
}
mipM[i][i]++
if mipM[i][i] != (i+1)+1 {
panic(fmt.Sprintf("update mipM[%d][%d] = %d\n", i, i, mipM[i][i]))
}
}
// test range on nil map
var mnil map[string]int
for _, _ = range mnil {
panic("range mnil")
}
}
func testfloat() {
// Test floating point numbers in maps.
// Two map keys refer to the same entry if the keys are ==.
// The special cases, then, are that +0 == -0 and that NaN != NaN.
{
var (
pz = float32(0)
nz = math.Float32frombits(1 << 31)
nana = float32(math.NaN())
nanb = math.Float32frombits(math.Float32bits(nana) ^ 2)
)
m := map[float32]string{
pz: "+0",
nana: "NaN",
nanb: "NaN",
}
if m[pz] != "+0" {
panic(fmt.Sprintln("float32 map cannot read back m[+0]:", m[pz]))
}
if m[nz] != "+0" {
fmt.Sprintln("float32 map does not treat", pz, "and", nz, "as equal for read")
panic(fmt.Sprintln("float32 map does not treat -0 and +0 as equal for read"))
}
m[nz] = "-0"
if m[pz] != "-0" {
panic(fmt.Sprintln("float32 map does not treat -0 and +0 as equal for write"))
}
if _, ok := m[nana]; ok {
panic(fmt.Sprintln("float32 map allows NaN lookup (a)"))
}
if _, ok := m[nanb]; ok {
panic(fmt.Sprintln("float32 map allows NaN lookup (b)"))
}
if len(m) != 3 {
panic(fmt.Sprintln("float32 map should have 3 entries:", m))
}
m[nana] = "NaN"
m[nanb] = "NaN"
if len(m) != 5 {
panic(fmt.Sprintln("float32 map should have 5 entries:", m))
}
}
{
var (
pz = float64(0)
nz = math.Float64frombits(1 << 63)
nana = float64(math.NaN())
nanb = math.Float64frombits(math.Float64bits(nana) ^ 2)
)
m := map[float64]string{
pz: "+0",
nana: "NaN",
nanb: "NaN",
}
if m[nz] != "+0" {
panic(fmt.Sprintln("float64 map does not treat -0 and +0 as equal for read"))
}
m[nz] = "-0"
if m[pz] != "-0" {
panic(fmt.Sprintln("float64 map does not treat -0 and +0 as equal for write"))
}
if _, ok := m[nana]; ok {
panic(fmt.Sprintln("float64 map allows NaN lookup (a)"))
}
if _, ok := m[nanb]; ok {
panic(fmt.Sprintln("float64 map allows NaN lookup (b)"))
}
if len(m) != 3 {
panic(fmt.Sprintln("float64 map should have 3 entries:", m))
}
m[nana] = "NaN"
m[nanb] = "NaN"
if len(m) != 5 {
panic(fmt.Sprintln("float64 map should have 5 entries:", m))
}
}
{
var (
pz = complex64(0)
nz = complex(0, math.Float32frombits(1<<31))
nana = complex(5, float32(math.NaN()))
nanb = complex(5, math.Float32frombits(math.Float32bits(float32(math.NaN()))^2))
)
m := map[complex64]string{
pz: "+0",
nana: "NaN",
nanb: "NaN",
}
if m[nz] != "+0" {
panic(fmt.Sprintln("complex64 map does not treat -0 and +0 as equal for read"))
}
m[nz] = "-0"
if m[pz] != "-0" {
panic(fmt.Sprintln("complex64 map does not treat -0 and +0 as equal for write"))
}
if _, ok := m[nana]; ok {
panic(fmt.Sprintln("complex64 map allows NaN lookup (a)"))
}
if _, ok := m[nanb]; ok {
panic(fmt.Sprintln("complex64 map allows NaN lookup (b)"))
}
if len(m) != 3 {
panic(fmt.Sprintln("complex64 map should have 3 entries:", m))
}
m[nana] = "NaN"
m[nanb] = "NaN"
if len(m) != 5 {
panic(fmt.Sprintln("complex64 map should have 5 entries:", m))
}
}
{
var (
pz = complex128(0)
nz = complex(0, math.Float64frombits(1<<63))
nana = complex(5, float64(math.NaN()))
nanb = complex(5, math.Float64frombits(math.Float64bits(float64(math.NaN()))^2))
)
m := map[complex128]string{
pz: "+0",
nana: "NaN",
nanb: "NaN",
}
if m[nz] != "+0" {
panic(fmt.Sprintln("complex128 map does not treat -0 and +0 as equal for read"))
}
m[nz] = "-0"
if m[pz] != "-0" {
panic(fmt.Sprintln("complex128 map does not treat -0 and +0 as equal for write"))
}
if _, ok := m[nana]; ok {
panic(fmt.Sprintln("complex128 map allows NaN lookup (a)"))
}
if _, ok := m[nanb]; ok {
panic(fmt.Sprintln("complex128 map allows NaN lookup (b)"))
}
if len(m) != 3 {
panic(fmt.Sprintln("complex128 map should have 3 entries:", m))
}
m[nana] = "NaN"
m[nanb] = "NaN"
if len(m) != 5 {
panic(fmt.Sprintln("complex128 map should have 5 entries:", m))
}
}
}
func testnan() {
// Test that NaNs in maps don't go quadratic.
t := func(n int) time.Duration {
t0 := time.Now()
m := map[float64]int{}
nan := math.NaN()
for i := 0; i < n; i++ {
m[nan] = 1
}
if len(m) != n {
panic("wrong size map after nan insertion")
}
return time.Since(t0)
}
// Depending on the machine and OS, this test might be too fast
// to measure with accurate enough granularity. On failure,
// make it run longer, hoping that the timing granularity
// is eventually sufficient.
n := 30000 // 0.02 seconds on a MacBook Air
fails := 0
for {
t1 := t(n)
t2 := t(2 * n)
// should be 2x (linear); allow up to 3x
if t2 < 3*t1 {
return
}
fails++
if fails == 4 {
panic(fmt.Sprintf("too slow: %d inserts: %v; %d inserts: %v\n", n, t1, 2*n, t2))
return
}
n *= 2
}
}