1
0
mirror of https://github.com/golang/go synced 2024-11-26 14:26:51 -07:00
go/usr/gri/pretty/parser.go
Robert Griesemer 18ed7e690a - accept new composite literal syntax
- remove all parsing heuristics
- as a result, accept a wider syntax, but parser is simpler

R=r
OCL=25029
CL=25029
2009-02-13 16:27:53 -08:00

1582 lines
32 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package Parser
import (
"flag";
"fmt";
"vector";
Scanner "scanner";
AST "ast";
SymbolTable "symboltable";
)
type Parser struct {
// Tracing/debugging
trace, sixg, deps bool;
indent uint;
// Scanner
scanner *Scanner.Scanner;
comments *vector.Vector;
// Scanner.Token
pos int; // token source position
tok int; // one token look-ahead
val string; // token value (for IDENT, NUMBER, STRING only)
// Non-syntactic parser control
opt_semi bool; // true if semicolon is optional
// Nesting levels
scope_lev int; // 0 = global scope, 1 = function scope of global functions, etc.
// Scopes
top_scope *SymbolTable.Scope;
};
// ----------------------------------------------------------------------------
// Elementary support
func unimplemented() {
panic("unimplemented");
}
func unreachable() {
panic("unreachable");
}
func assert(pred bool) {
if !pred {
panic("assertion failed");
}
}
// ----------------------------------------------------------------------------
// Parsing support
func (P *Parser) printIndent() {
i := P.indent;
// reduce printing time by a factor of 2 or more
for ; i > 10; i -= 10 {
fmt.Printf(". . . . . . . . . . ");
}
for ; i > 0; i-- {
fmt.Printf(". ");
}
}
func trace(P *Parser, msg string) *Parser {
P.printIndent();
fmt.Printf("%s (\n", msg);
P.indent++;
return P;
}
func un/*trace*/(P *Parser) {
P.indent--;
P.printIndent();
fmt.Printf(")\n");
}
func (P *Parser) next0() {
P.pos, P.tok, P.val = P.scanner.Scan();
P.opt_semi = false;
if P.trace {
P.printIndent();
switch P.tok {
case Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING:
fmt.Printf("[%d] %s = %s\n", P.pos, Scanner.TokenString(P.tok), P.val);
case Scanner.LPAREN:
// don't print '(' - screws up selection in terminal window
fmt.Printf("[%d] LPAREN\n", P.pos);
case Scanner.RPAREN:
// don't print ')' - screws up selection in terminal window
fmt.Printf("[%d] RPAREN\n", P.pos);
default:
fmt.Printf("[%d] %s\n", P.pos, Scanner.TokenString(P.tok));
}
}
}
func (P *Parser) next() {
for P.next0(); P.tok == Scanner.COMMENT; P.next0() {
P.comments.Push(AST.NewComment(P.pos, P.val));
}
}
func (P *Parser) Open(trace, sixg, deps bool, scanner *Scanner.Scanner) {
P.trace = trace;
P.sixg = sixg;
P.deps = deps;
P.indent = 0;
P.scanner = scanner;
P.comments = vector.New(0);
P.next();
P.scope_lev = 0;
}
func (P *Parser) error(pos int, msg string) {
P.scanner.Error(pos, msg);
}
func (P *Parser) expect(tok int) {
if P.tok != tok {
msg := "expected '" + Scanner.TokenString(tok) + "', found '" + Scanner.TokenString(P.tok) + "'";
switch P.tok {
case Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING:
msg += " " + P.val;
}
P.error(P.pos, msg);
}
P.next(); // make progress in any case
}
func (P *Parser) OptSemicolon() {
if P.tok == Scanner.SEMICOLON {
P.next();
}
}
// ----------------------------------------------------------------------------
// Scopes
func (P *Parser) openScope() {
P.top_scope = SymbolTable.NewScope(P.top_scope);
}
func (P *Parser) closeScope() {
P.top_scope = P.top_scope.Parent;
}
func (P *Parser) declareInScope(scope *SymbolTable.Scope, x AST.Expr, kind int, typ *AST.Type) {
if P.scope_lev < 0 {
panic("cannot declare objects in other packages");
}
if ident, ok := x.(*AST.Ident); ok { // ignore bad exprs
obj := ident.Obj;
obj.Kind = kind;
//TODO fix typ setup!
//obj.Typ = typ;
obj.Pnolev = P.scope_lev;
switch {
case scope.LookupLocal(obj.Ident) == nil:
scope.Insert(obj);
case kind == SymbolTable.TYPE:
// possibly a forward declaration
case kind == SymbolTable.FUNC:
// possibly a forward declaration
default:
P.error(obj.Pos, `"` + obj.Ident + `" is declared already`);
}
}
}
// declare a comma-separated list of idents or a single ident.
func (P *Parser) declare(x AST.Expr, kind int, typ *AST.Type) {
for {
p, ok := x.(*AST.BinaryExpr);
if ok && p.Tok == Scanner.COMMA {
P.declareInScope(P.top_scope, p.X, kind, typ);
x = p.Y;
} else {
break;
}
}
P.declareInScope(P.top_scope, x, kind, typ);
}
// ----------------------------------------------------------------------------
// Common productions
func (P *Parser) tryType() *AST.Type;
func (P *Parser) parseExpression(prec int) AST.Expr;
func (P *Parser) parseStatement() AST.Stat;
func (P *Parser) parseDeclaration() *AST.Decl;
// If scope != nil, lookup identifier in scope. Otherwise create one.
func (P *Parser) parseIdent(scope *SymbolTable.Scope) *AST.Ident {
if P.trace {
defer un(trace(P, "Ident"));
}
if P.tok == Scanner.IDENT {
var obj *SymbolTable.Object;
if scope != nil {
obj = scope.Lookup(P.val);
}
if obj == nil {
obj = SymbolTable.NewObject(P.pos, SymbolTable.NONE, P.val);
} else {
assert(obj.Kind != SymbolTable.NONE);
}
x := &AST.Ident(P.pos, obj);
P.next();
return x;
}
P.expect(Scanner.IDENT); // use expect() error handling
return &AST.Ident(P.pos, nil);
}
func (P *Parser) parseIdentList() AST.Expr {
if P.trace {
defer un(trace(P, "IdentList"));
}
var last *AST.BinaryExpr;
var x AST.Expr = P.parseIdent(nil);
for P.tok == Scanner.COMMA {
pos := P.pos;
P.next();
y := P.parseIdent(nil);
if last == nil {
last = &AST.BinaryExpr(pos, Scanner.COMMA, x, y);
x = last;
} else {
last.Y = &AST.BinaryExpr(pos, Scanner.COMMA, last.Y, y);
last = last.Y.(*AST.BinaryExpr);
}
}
return x;
}
// ----------------------------------------------------------------------------
// Types
func (P *Parser) parseType() *AST.Type {
if P.trace {
defer un(trace(P, "Type"));
}
t := P.tryType();
if t == nil {
P.error(P.pos, "type expected");
t = AST.BadType;
}
return t;
}
func (P *Parser) parseVarType() *AST.Type {
if P.trace {
defer un(trace(P, "VarType"));
}
return P.parseType();
}
func (P *Parser) parseQualifiedIdent() AST.Expr {
if P.trace {
defer un(trace(P, "QualifiedIdent"));
}
var x AST.Expr = P.parseIdent(P.top_scope);
for P.tok == Scanner.PERIOD {
pos := P.pos;
P.next();
y := P.parseIdent(nil);
x = &AST.Selector(pos, x, y);
}
return x;
}
func (P *Parser) parseTypeName() *AST.Type {
if P.trace {
defer un(trace(P, "TypeName"));
}
t := AST.NewType(P.pos, AST.TYPENAME);
t.Expr = P.parseQualifiedIdent();
return t;
}
func (P *Parser) parseArrayType() *AST.Type {
if P.trace {
defer un(trace(P, "ArrayType"));
}
t := AST.NewType(P.pos, AST.ARRAY);
P.expect(Scanner.LBRACK);
if P.tok == Scanner.ELLIPSIS {
t.Expr = &AST.BinaryExpr(P.pos, Scanner.ELLIPSIS, nil, nil);
P.next();
} else if P.tok != Scanner.RBRACK {
t.Expr = P.parseExpression(1);
}
P.expect(Scanner.RBRACK);
t.Elt = P.parseType();
return t;
}
func (P *Parser) parseChannelType() *AST.Type {
if P.trace {
defer un(trace(P, "ChannelType"));
}
t := AST.NewType(P.pos, AST.CHANNEL);
t.Mode = AST.FULL;
if P.tok == Scanner.CHAN {
P.next();
if P.tok == Scanner.ARROW {
P.next();
t.Mode = AST.SEND;
}
} else {
P.expect(Scanner.ARROW);
P.expect(Scanner.CHAN);
t.Mode = AST.RECV;
}
t.Elt = P.parseVarType();
return t;
}
func (P *Parser) parseVar(expect_ident bool) *AST.Type {
t := AST.BadType;
if expect_ident {
x := P.parseIdent(nil);
t = AST.NewType(x.Pos(), AST.TYPENAME);
t.Expr = x;
} else if P.tok == Scanner.ELLIPSIS {
t = AST.NewType(P.pos, AST.ELLIPSIS);
P.next();
} else {
t = P.parseType();
}
return t;
}
func (P *Parser) parseVarList(list *vector.Vector, ellipsis_ok bool) {
if P.trace {
defer un(trace(P, "VarList"));
}
// assume a list of types
// (a list of identifiers looks like a list of type names)
i0 := list.Len();
for {
list.Push(P.parseVar(ellipsis_ok /* param list */ && i0 > 0));
if P.tok == Scanner.COMMA {
P.next();
} else {
break;
}
}
// if we had a list of identifiers, it must be followed by a type
typ := P.tryType();
if typ == nil && P.tok == Scanner.ELLIPSIS {
typ = AST.NewType(P.pos, AST.ELLIPSIS);
P.next();
}
if ellipsis_ok /* param list */ && i0 > 0 && typ == nil {
// not the first parameter section; we must have a type
P.error(P.pos, "type expected");
typ = AST.BadType;
}
// convert the list into a list of (type) expressions
if typ != nil {
// all list entries must be identifiers
// convert the type entries into identifiers
for i, n := i0, list.Len(); i < n; i++ {
t := list.At(i).(*AST.Type);
if t.Form == AST.TYPENAME {
if ident, ok := t.Expr.(*AST.Ident); ok {
list.Set(i, ident);
continue;
}
}
list.Set(i, &AST.BadExpr(0));
P.error(t.Pos, "identifier expected");
}
// add type
list.Push(&AST.TypeLit(typ));
} else {
// all list entries are types
// convert all type entries into type expressions
for i, n := i0, list.Len(); i < n; i++ {
t := list.At(i).(*AST.Type);
list.Set(i, &AST.TypeLit(t));
}
}
}
func (P *Parser) parseParameterList(ellipsis_ok bool) *vector.Vector {
if P.trace {
defer un(trace(P, "ParameterList"));
}
list := vector.New(0);
P.parseVarList(list, ellipsis_ok);
for P.tok == Scanner.COMMA {
P.next();
P.parseVarList(list, ellipsis_ok);
}
return list;
}
func (P *Parser) parseParameters(ellipsis_ok bool) *AST.Type {
if P.trace {
defer un(trace(P, "Parameters"));
}
t := AST.NewType(P.pos, AST.STRUCT);
P.expect(Scanner.LPAREN);
if P.tok != Scanner.RPAREN {
t.List = P.parseParameterList(ellipsis_ok);
}
t.End = P.pos;
P.expect(Scanner.RPAREN);
return t;
}
func (P *Parser) parseResultList() {
if P.trace {
defer un(trace(P, "ResultList"));
}
P.parseType();
for P.tok == Scanner.COMMA {
P.next();
P.parseType();
}
if P.tok != Scanner.RPAREN {
P.parseType();
}
}
func (P *Parser) parseResult(ftyp *AST.Type) *AST.Type {
if P.trace {
defer un(trace(P, "Result"));
}
var t *AST.Type;
if P.tok == Scanner.LPAREN {
t = P.parseParameters(false);
} else if P.tok != Scanner.FUNC {
typ := P.tryType();
if typ != nil {
t = AST.NewType(P.pos, AST.STRUCT);
t.List = vector.New(0);
t.List.Push(&AST.TypeLit(typ));
t.End = P.pos;
}
}
return t;
}
// Function types
//
// (params)
// (params) type
// (params) (results)
func (P *Parser) parseSignature() *AST.Type {
if P.trace {
defer un(trace(P, "Signature"));
}
P.openScope();
P.scope_lev++;
t := AST.NewType(P.pos, AST.FUNCTION);
t.Scope = P.top_scope;
t.List = P.parseParameters(true).List; // TODO find better solution
t.End = P.pos;
t.Elt = P.parseResult(t);
P.scope_lev--;
P.closeScope();
return t;
}
func (P *Parser) parseFunctionType() *AST.Type {
if P.trace {
defer un(trace(P, "FunctionType"));
}
P.expect(Scanner.FUNC);
return P.parseSignature();
}
func (P *Parser) parseMethodSpec(list *vector.Vector) {
if P.trace {
defer un(trace(P, "MethodDecl"));
}
list.Push(P.parseIdentList());
t := P.parseSignature();
list.Push(&AST.TypeLit(t));
}
func (P *Parser) parseInterfaceType() *AST.Type {
if P.trace {
defer un(trace(P, "InterfaceType"));
}
t := AST.NewType(P.pos, AST.INTERFACE);
P.expect(Scanner.INTERFACE);
if P.tok == Scanner.LBRACE {
P.next();
P.openScope();
P.scope_lev++;
t.List = vector.New(0);
for P.tok == Scanner.IDENT {
P.parseMethodSpec(t.List);
if P.tok != Scanner.RBRACE {
P.expect(Scanner.SEMICOLON);
}
}
t.End = P.pos;
P.scope_lev--;
P.closeScope();
P.expect(Scanner.RBRACE);
}
return t;
}
func (P *Parser) parseMapType() *AST.Type {
if P.trace {
defer un(trace(P, "MapType"));
}
t := AST.NewType(P.pos, AST.MAP);
P.expect(Scanner.MAP);
P.expect(Scanner.LBRACK);
t.Key = P.parseVarType();
P.expect(Scanner.RBRACK);
t.Elt = P.parseVarType();
return t;
}
func (P *Parser) parseOperand() AST.Expr
func (P *Parser) parseStructType() *AST.Type {
if P.trace {
defer un(trace(P, "StructType"));
}
t := AST.NewType(P.pos, AST.STRUCT);
P.expect(Scanner.STRUCT);
if P.tok == Scanner.LBRACE {
P.next();
t.List = vector.New(0);
t.Scope = SymbolTable.NewScope(nil);
for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF {
P.parseVarList(t.List, false);
if P.tok == Scanner.STRING {
// ParseOperand takes care of string concatenation
t.List.Push(P.parseOperand());
}
if P.tok == Scanner.SEMICOLON {
P.next();
} else {
break;
}
}
P.OptSemicolon();
t.End = P.pos;
P.expect(Scanner.RBRACE);
// enter fields into struct scope
for i, n := 0, t.List.Len(); i < n; i++ {
if x, ok := t.List.At(i).(*AST.Ident); ok {
P.declareInScope(t.Scope, x, SymbolTable.FIELD, nil);
}
}
}
return t;
}
func (P *Parser) parsePointerType() *AST.Type {
if P.trace {
defer un(trace(P, "PointerType"));
}
t := AST.NewType(P.pos, AST.POINTER);
P.expect(Scanner.MUL);
t.Elt = P.parseType();
return t;
}
func (P *Parser) tryType() *AST.Type {
if P.trace {
defer un(trace(P, "Type (try)"));
}
switch P.tok {
case Scanner.IDENT: return P.parseTypeName();
case Scanner.LBRACK: return P.parseArrayType();
case Scanner.CHAN, Scanner.ARROW: return P.parseChannelType();
case Scanner.INTERFACE: return P.parseInterfaceType();
case Scanner.FUNC: return P.parseFunctionType();
case Scanner.MAP: return P.parseMapType();
case Scanner.STRUCT: return P.parseStructType();
case Scanner.MUL: return P.parsePointerType();
}
// no type found
return nil;
}
// ----------------------------------------------------------------------------
// Blocks
func (P *Parser) parseStatementList(list *vector.Vector) {
if P.trace {
defer un(trace(P, "StatementList"));
}
expect_semi := false;
for P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE && P.tok != Scanner.EOF {
if expect_semi {
P.expect(Scanner.SEMICOLON);
expect_semi = false;
}
list.Push(P.parseStatement());
if P.tok == Scanner.SEMICOLON {
P.next();
} else if P.opt_semi {
P.opt_semi = false; // "consume" optional semicolon
} else {
expect_semi = true;
}
}
}
func (P *Parser) parseBlock(ftyp *AST.Type, tok int) *AST.Block {
if P.trace {
defer un(trace(P, "Block"));
}
b := AST.NewBlock(P.pos, tok);
P.expect(tok);
P.openScope();
// enter recv and parameters into function scope
if ftyp != nil {
assert(ftyp.Form == AST.FUNCTION);
if ftyp.Key != nil {
}
if ftyp.List != nil {
for i, n := 0, ftyp.List.Len(); i < n; i++ {
if x, ok := ftyp.List.At(i).(*AST.Ident); ok {
P.declareInScope(P.top_scope, x, SymbolTable.VAR, nil);
}
}
}
}
P.parseStatementList(b.List);
P.closeScope();
if tok == Scanner.LBRACE {
b.End = P.pos;
P.expect(Scanner.RBRACE);
P.opt_semi = true;
}
return b;
}
// ----------------------------------------------------------------------------
// Expressions
func (P *Parser) parseExpressionList() AST.Expr {
if P.trace {
defer un(trace(P, "ExpressionList"));
}
x := P.parseExpression(1);
for first := true; P.tok == Scanner.COMMA; {
pos := P.pos;
P.next();
y := P.parseExpression(1);
if first {
x = &AST.BinaryExpr(pos, Scanner.COMMA, x, y);
first = false;
} else {
x.(*AST.BinaryExpr).Y = &AST.BinaryExpr(pos, Scanner.COMMA, x.(*AST.BinaryExpr).Y, y);
}
}
return x;
}
func (P *Parser) parseFunctionLit() AST.Expr {
if P.trace {
defer un(trace(P, "FunctionLit"));
}
pos := P.pos;
P.expect(Scanner.FUNC);
typ := P.parseSignature();
P.scope_lev++;
body := P.parseBlock(typ, Scanner.LBRACE);
P.scope_lev--;
return &AST.FunctionLit(pos, typ, body);
}
func (P *Parser) parseOperand() AST.Expr {
if P.trace {
defer un(trace(P, "Operand"));
}
switch P.tok {
case Scanner.IDENT:
return P.parseIdent(P.top_scope);
case Scanner.LPAREN:
P.next();
x := P.parseExpression(1);
P.expect(Scanner.RPAREN);
return x;
case Scanner.INT, Scanner.FLOAT, Scanner.STRING:
x := &AST.BasicLit(P.pos, P.tok, P.val);
P.next();
if x.Tok == Scanner.STRING {
// TODO should remember the list instead of
// concatenate the strings here
for ; P.tok == Scanner.STRING; P.next() {
x.Val += P.val;
}
}
return x;
case Scanner.FUNC:
return P.parseFunctionLit();
default:
t := P.tryType();
if t != nil {
return &AST.TypeLit(t);
} else {
P.error(P.pos, "operand expected");
P.next(); // make progress
}
}
return &AST.BadExpr(P.pos);
}
func (P *Parser) parseSelectorOrTypeGuard(x AST.Expr) AST.Expr {
if P.trace {
defer un(trace(P, "SelectorOrTypeGuard"));
}
pos := P.pos;
P.expect(Scanner.PERIOD);
if P.tok == Scanner.IDENT {
x = &AST.Selector(pos, x, P.parseIdent(nil));
} else {
P.expect(Scanner.LPAREN);
x = &AST.TypeGuard(pos, x, P.parseType());
P.expect(Scanner.RPAREN);
}
return x;
}
func (P *Parser) parseIndex(x AST.Expr) AST.Expr {
if P.trace {
defer un(trace(P, "IndexOrSlice"));
}
pos := P.pos;
P.expect(Scanner.LBRACK);
i := P.parseExpression(0);
P.expect(Scanner.RBRACK);
return &AST.Index(pos, x, i);
}
func (P *Parser) parseBinaryExpr(prec1 int) AST.Expr
func (P *Parser) parseCompositeElements() AST.Expr {
x := P.parseExpression(0);
if P.tok == Scanner.COMMA {
pos := P.pos;
P.next();
// first element determines mode
singles := true;
if t, is_binary := x.(*AST.BinaryExpr); is_binary && t.Tok == Scanner.COLON {
singles = false;
}
var last *AST.BinaryExpr;
for P.tok != Scanner.RPAREN && P.tok != Scanner.EOF {
y := P.parseExpression(0);
if singles {
if t, is_binary := y.(*AST.BinaryExpr); is_binary && t.Tok == Scanner.COLON {
P.error(t.X.Pos(), "single value expected; found pair");
}
} else {
if t, is_binary := y.(*AST.BinaryExpr); !is_binary || t.Tok != Scanner.COLON {
P.error(y.Pos(), "key:value pair expected; found single value");
}
}
if last == nil {
last = &AST.BinaryExpr(pos, Scanner.COMMA, x, y);
x = last;
} else {
last.Y = &AST.BinaryExpr(pos, Scanner.COMMA, last.Y, y);
last = last.Y.(*AST.BinaryExpr);
}
if P.tok == Scanner.COMMA {
pos = P.pos;
P.next();
} else {
break;
}
}
}
return x;
}
func (P *Parser) parseCallOrCompositeLit(f AST.Expr) AST.Expr {
if P.trace {
defer un(trace(P, "CallOrCompositeLit"));
}
pos := P.pos;
P.expect(Scanner.LPAREN);
var args AST.Expr;
if P.tok != Scanner.RPAREN {
args = P.parseCompositeElements();
}
P.expect(Scanner.RPAREN);
return &AST.Call(pos, f, args);
}
func (P *Parser) parsePrimaryExpr() AST.Expr {
if P.trace {
defer un(trace(P, "PrimaryExpr"));
}
x := P.parseOperand();
for {
switch P.tok {
case Scanner.PERIOD: x = P.parseSelectorOrTypeGuard(x);
case Scanner.LBRACK: x = P.parseIndex(x);
case Scanner.LPAREN: x = P.parseCallOrCompositeLit(x);
default:
return x;
}
}
unreachable();
return nil;
}
func (P *Parser) parseUnaryExpr() AST.Expr {
if P.trace {
defer un(trace(P, "UnaryExpr"));
}
switch P.tok {
case Scanner.ADD, Scanner.SUB, Scanner.MUL, Scanner.NOT, Scanner.XOR, Scanner.ARROW, Scanner.AND:
pos, tok := P.pos, P.tok;
P.next();
y := P.parseUnaryExpr();
if lit, ok := y.(*AST.TypeLit); ok && tok == Scanner.MUL {
// pointer type
t := AST.NewType(pos, AST.POINTER);
t.Elt = lit.Typ;
return &AST.TypeLit(t);
} else {
return &AST.UnaryExpr(pos, tok, y);
}
}
return P.parsePrimaryExpr();
}
func (P *Parser) parseBinaryExpr(prec1 int) AST.Expr {
if P.trace {
defer un(trace(P, "BinaryExpr"));
}
x := P.parseUnaryExpr();
for prec := Scanner.Precedence(P.tok); prec >= prec1; prec-- {
for Scanner.Precedence(P.tok) == prec {
pos, tok := P.pos, P.tok;
P.next();
y := P.parseBinaryExpr(prec + 1);
x = &AST.BinaryExpr(pos, tok, x, y);
}
}
return x;
}
func (P *Parser) parseExpression(prec int) AST.Expr {
if P.trace {
defer un(trace(P, "Expression"));
}
if prec < 0 {
panic("precedence must be >= 0");
}
return P.parseBinaryExpr(prec);
}
// ----------------------------------------------------------------------------
// Statements
func (P *Parser) parseSimpleStat(range_ok bool) AST.Stat {
if P.trace {
defer un(trace(P, "SimpleStat"));
}
x := P.parseExpressionList();
switch P.tok {
case Scanner.COLON:
// label declaration
pos := P.pos;
P.next(); // consume ":"
P.opt_semi = true;
if AST.ExprLen(x) == 1 {
if label, is_ident := x.(*AST.Ident); is_ident {
return &AST.LabelDecl(pos, label);
}
}
P.error(x.Pos(), "illegal label declaration");
return nil;
case
Scanner.DEFINE, Scanner.ASSIGN, Scanner.ADD_ASSIGN,
Scanner.SUB_ASSIGN, Scanner.MUL_ASSIGN, Scanner.QUO_ASSIGN,
Scanner.REM_ASSIGN, Scanner.AND_ASSIGN, Scanner.OR_ASSIGN,
Scanner.XOR_ASSIGN, Scanner.SHL_ASSIGN, Scanner.SHR_ASSIGN:
// declaration/assignment
pos, tok := P.pos, P.tok;
P.next();
var y AST.Expr;
if range_ok && P.tok == Scanner.RANGE {
range_pos := P.pos;
P.next();
y = &AST.UnaryExpr(range_pos, Scanner.RANGE, P.parseExpression(1));
if tok != Scanner.DEFINE && tok != Scanner.ASSIGN {
P.error(pos, "expected '=' or ':=', found '" + Scanner.TokenString(tok) + "'");
}
} else {
y = P.parseExpressionList();
if xl, yl := AST.ExprLen(x), AST.ExprLen(y); xl > 1 && yl > 1 && xl != yl {
P.error(x.Pos(), "arity of lhs doesn't match rhs");
}
}
// TODO changed ILLEGAL -> NONE
return &AST.ExpressionStat(x.Pos(), Scanner.ILLEGAL, &AST.BinaryExpr(pos, tok, x, y));
default:
if AST.ExprLen(x) != 1 {
P.error(x.Pos(), "only one expression allowed");
}
if P.tok == Scanner.INC || P.tok == Scanner.DEC {
s := &AST.ExpressionStat(P.pos, P.tok, x);
P.next(); // consume "++" or "--"
return s;
}
// TODO changed ILLEGAL -> NONE
return &AST.ExpressionStat(x.Pos(), Scanner.ILLEGAL, x);
}
unreachable();
return nil;
}
func (P *Parser) parseInvocationStat(keyword int) *AST.ExpressionStat {
if P.trace {
defer un(trace(P, "InvocationStat"));
}
pos := P.pos;
P.expect(keyword);
return &AST.ExpressionStat(pos, keyword, P.parseExpression(1));
}
func (P *Parser) parseReturnStat() *AST.ExpressionStat {
if P.trace {
defer un(trace(P, "ReturnStat"));
}
pos := P.pos;
P.expect(Scanner.RETURN);
var x AST.Expr;
if P.tok != Scanner.SEMICOLON && P.tok != Scanner.RBRACE {
x = P.parseExpressionList();
}
return &AST.ExpressionStat(pos, Scanner.RETURN, x);
}
func (P *Parser) parseControlFlowStat(tok int) *AST.ControlFlowStat {
if P.trace {
defer un(trace(P, "ControlFlowStat"));
}
s := &AST.ControlFlowStat(P.pos, tok, nil);
P.expect(tok);
if tok != Scanner.FALLTHROUGH && P.tok == Scanner.IDENT {
s.Label = P.parseIdent(P.top_scope);
}
return s;
}
func (P *Parser) parseControlClause(isForStat bool) (init AST.Stat, expr AST.Expr, post AST.Stat) {
if P.trace {
defer un(trace(P, "ControlClause"));
}
if P.tok != Scanner.LBRACE {
if P.tok != Scanner.SEMICOLON {
init = P.parseSimpleStat(isForStat);
// TODO check for range clause and exit if found
}
if P.tok == Scanner.SEMICOLON {
P.next();
if P.tok != Scanner.SEMICOLON && P.tok != Scanner.LBRACE {
expr = P.parseExpression(1);
}
if isForStat {
P.expect(Scanner.SEMICOLON);
if P.tok != Scanner.LBRACE {
post = P.parseSimpleStat(false);
}
}
} else {
if init != nil { // guard in case of errors
if s, is_expr_stat := init.(*AST.ExpressionStat); is_expr_stat {
expr, init = s.Expr, nil;
} else {
P.error(0, "illegal control clause");
}
}
}
}
return init, expr, post;
}
func (P *Parser) parseIfStat() *AST.IfStat {
if P.trace {
defer un(trace(P, "IfStat"));
}
P.openScope();
pos := P.pos;
P.expect(Scanner.IF);
init, cond, dummy := P.parseControlClause(false);
body := P.parseBlock(nil, Scanner.LBRACE);
var else_ AST.Stat;
if P.tok == Scanner.ELSE {
P.next();
if ok := P.tok == Scanner.IF || P.tok == Scanner.LBRACE; ok || P.sixg {
else_ = P.parseStatement();
if !ok {
// wrap in a block since we don't have one
body := AST.NewBlock(0, Scanner.LBRACE);
body.List.Push(else_);
else_ = &AST.CompositeStat(body);
}
} else {
P.error(P.pos, "'if' or '{' expected - illegal 'else' branch");
}
}
P.closeScope();
return &AST.IfStat(pos, init, cond, body, else_);
}
func (P *Parser) parseForStat() *AST.ForStat {
if P.trace {
defer un(trace(P, "ForStat"));
}
P.openScope();
pos := P.pos;
P.expect(Scanner.FOR);
init, cond, post := P.parseControlClause(true);
body := P.parseBlock(nil, Scanner.LBRACE);
P.closeScope();
return &AST.ForStat(pos, init, cond, post, body);
}
func (P *Parser) parseCaseClause() *AST.CaseClause {
if P.trace {
defer un(trace(P, "CaseClause"));
}
// SwitchCase
pos := P.pos;
var expr AST.Expr;
if P.tok == Scanner.CASE {
P.next();
expr = P.parseExpressionList();
} else {
P.expect(Scanner.DEFAULT);
}
return &AST.CaseClause(pos, expr, P.parseBlock(nil, Scanner.COLON));
}
func (P *Parser) parseSwitchStat() *AST.SwitchStat {
if P.trace {
defer un(trace(P, "SwitchStat"));
}
P.openScope();
pos := P.pos;
P.expect(Scanner.SWITCH);
init, tag, post := P.parseControlClause(false);
body := AST.NewBlock(P.pos, Scanner.LBRACE);
P.expect(Scanner.LBRACE);
for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF {
body.List.Push(P.parseCaseClause());
}
body.End = P.pos;
P.expect(Scanner.RBRACE);
P.opt_semi = true;
P.closeScope();
return &AST.SwitchStat(pos, init, tag, body);
}
func (P *Parser) parseCommClause() *AST.CaseClause {
if P.trace {
defer un(trace(P, "CommClause"));
}
// CommCase
pos := P.pos;
var expr AST.Expr;
if P.tok == Scanner.CASE {
P.next();
x := P.parseExpression(1);
if P.tok == Scanner.ASSIGN || P.tok == Scanner.DEFINE {
pos, tok := P.pos, P.tok;
P.next();
if P.tok == Scanner.ARROW {
y := P.parseExpression(1);
x = &AST.BinaryExpr(pos, tok, x, y);
} else {
P.expect(Scanner.ARROW); // use expect() error handling
}
}
expr = x;
} else {
P.expect(Scanner.DEFAULT);
}
return &AST.CaseClause(pos, expr, P.parseBlock(nil, Scanner.COLON));
}
func (P *Parser) parseSelectStat() *AST.SelectStat {
if P.trace {
defer un(trace(P, "SelectStat"));
}
P.openScope();
pos := P.pos;
P.expect(Scanner.SELECT);
body := AST.NewBlock(P.pos, Scanner.LBRACE);
P.expect(Scanner.LBRACE);
for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF {
body.List.Push(P.parseCommClause());
}
body.End = P.pos;
P.expect(Scanner.RBRACE);
P.opt_semi = true;
P.closeScope();
return &AST.SelectStat(pos, body);
}
func (P *Parser) parseStatement() AST.Stat {
if P.trace {
defer un(trace(P, "Statement"));
}
switch P.tok {
case Scanner.CONST, Scanner.TYPE, Scanner.VAR:
return &AST.DeclarationStat(P.parseDeclaration());
case Scanner.FUNC:
// for now we do not allow local function declarations,
// instead we assume this starts a function literal
fallthrough;
case
// only the tokens that are legal top-level expression starts
Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING, Scanner.LPAREN, // operand
Scanner.LBRACK, Scanner.STRUCT, // composite type
Scanner.MUL, Scanner.AND, Scanner.ARROW: // unary
return P.parseSimpleStat(false);
case Scanner.GO, Scanner.DEFER:
return P.parseInvocationStat(P.tok);
case Scanner.RETURN:
return P.parseReturnStat();
case Scanner.BREAK, Scanner.CONTINUE, Scanner.GOTO, Scanner.FALLTHROUGH:
return P.parseControlFlowStat(P.tok);
case Scanner.LBRACE:
return &AST.CompositeStat(P.parseBlock(nil, Scanner.LBRACE));
case Scanner.IF:
return P.parseIfStat();
case Scanner.FOR:
return P.parseForStat();
case Scanner.SWITCH:
return P.parseSwitchStat();
case Scanner.SELECT:
return P.parseSelectStat();
case Scanner.SEMICOLON:
// don't consume the ";", it is the separator following the empty statement
return &AST.EmptyStat(P.pos);
}
// no statement found
P.error(P.pos, "statement expected");
return &AST.BadStat(P.pos);
}
// ----------------------------------------------------------------------------
// Declarations
func (P *Parser) parseImportSpec(d *AST.Decl) {
if P.trace {
defer un(trace(P, "ImportSpec"));
}
if P.tok == Scanner.PERIOD {
P.error(P.pos, `"import ." not yet handled properly`);
P.next();
} else if P.tok == Scanner.IDENT {
d.Ident = P.parseIdent(nil);
}
if P.tok == Scanner.STRING {
// TODO eventually the scanner should strip the quotes
d.Val = &AST.BasicLit(P.pos, Scanner.STRING, P.val);
P.next();
} else {
P.expect(Scanner.STRING); // use expect() error handling
}
}
func (P *Parser) parseConstSpec(d *AST.Decl) {
if P.trace {
defer un(trace(P, "ConstSpec"));
}
d.Ident = P.parseIdentList();
d.Typ = P.tryType();
if P.tok == Scanner.ASSIGN {
P.next();
d.Val = P.parseExpressionList();
}
}
func (P *Parser) parseTypeSpec(d *AST.Decl) {
if P.trace {
defer un(trace(P, "TypeSpec"));
}
d.Ident = P.parseIdent(nil);
d.Typ = P.parseType();
P.opt_semi = true;
}
func (P *Parser) parseVarSpec(d *AST.Decl) {
if P.trace {
defer un(trace(P, "VarSpec"));
}
d.Ident = P.parseIdentList();
if P.tok == Scanner.ASSIGN {
P.next();
d.Val = P.parseExpressionList();
} else {
d.Typ = P.parseVarType();
if P.tok == Scanner.ASSIGN {
P.next();
d.Val = P.parseExpressionList();
}
}
}
func (P *Parser) parseSpec(d *AST.Decl) {
kind := SymbolTable.NONE;
switch d.Tok {
case Scanner.IMPORT: P.parseImportSpec(d); kind = SymbolTable.PACKAGE;
case Scanner.CONST: P.parseConstSpec(d); kind = SymbolTable.CONST;
case Scanner.TYPE: P.parseTypeSpec(d); kind = SymbolTable.TYPE;
case Scanner.VAR: P.parseVarSpec(d); kind = SymbolTable.VAR;
default: unreachable();
}
// semantic checks
if d.Tok == Scanner.IMPORT {
if d.Ident != nil {
P.declare(d.Ident, kind, nil);
}
} else {
P.declare(d.Ident, kind, d.Typ);
if d.Val != nil {
// initialization/assignment
llen := AST.ExprLen(d.Ident);
rlen := AST.ExprLen(d.Val);
if llen == rlen {
// TODO
} else if rlen == 1 {
// TODO
} else {
if llen < rlen {
P.error(AST.ExprAt(d.Val, llen).Pos(), "more expressions than variables");
} else {
P.error(AST.ExprAt(d.Ident, rlen).Pos(), "more variables than expressions");
}
}
} else {
// TODO
}
}
}
func (P *Parser) parseDecl(keyword int) *AST.Decl {
if P.trace {
defer un(trace(P, "Decl"));
}
d := AST.NewDecl(P.pos, keyword);
P.expect(keyword);
if P.tok == Scanner.LPAREN {
P.next();
d.List = vector.New(0);
for P.tok != Scanner.RPAREN && P.tok != Scanner.EOF {
d1 := AST.NewDecl(P.pos, keyword);
P.parseSpec(d1);
d.List.Push(d1);
if P.tok == Scanner.SEMICOLON {
P.next();
} else {
break;
}
}
d.End = P.pos;
P.expect(Scanner.RPAREN);
P.opt_semi = true;
} else {
P.parseSpec(d);
}
return d;
}
// Function declarations
//
// func ident (params)
// func ident (params) type
// func ident (params) (results)
// func (recv) ident (params)
// func (recv) ident (params) type
// func (recv) ident (params) (results)
func (P *Parser) parseFunctionDecl() *AST.Decl {
if P.trace {
defer un(trace(P, "FunctionDecl"));
}
d := AST.NewDecl(P.pos, Scanner.FUNC);
P.expect(Scanner.FUNC);
var recv *AST.Type;
if P.tok == Scanner.LPAREN {
pos := P.pos;
recv = P.parseParameters(true);
if recv.Nfields() != 1 {
P.error(pos, "must have exactly one receiver");
}
}
ident := P.parseIdent(nil);
d.Ident = ident;
d.Typ = P.parseSignature();
d.Typ.Key = recv;
if P.tok == Scanner.LBRACE {
d.Body = P.parseBlock(d.Typ, Scanner.LBRACE);
}
return d;
}
func (P *Parser) parseDeclaration() *AST.Decl {
if P.trace {
defer un(trace(P, "Declaration"));
}
d := AST.BadDecl;
switch P.tok {
case Scanner.CONST, Scanner.TYPE, Scanner.VAR:
d = P.parseDecl(P.tok);
case Scanner.FUNC:
d = P.parseFunctionDecl();
default:
P.error(P.pos, "declaration expected");
P.next(); // make progress
}
return d;
}
// ----------------------------------------------------------------------------
// Program
func (P *Parser) ParseProgram() *AST.Program {
if P.trace {
defer un(trace(P, "Program"));
}
P.openScope();
p := AST.NewProgram(P.pos);
P.expect(Scanner.PACKAGE);
p.Ident = P.parseIdent(nil);
// package body
{ P.openScope();
p.Decls = vector.New(0);
for P.tok == Scanner.IMPORT {
p.Decls.Push(P.parseDecl(Scanner.IMPORT));
P.OptSemicolon();
}
if !P.deps {
for P.tok != Scanner.EOF {
p.Decls.Push(P.parseDeclaration());
P.OptSemicolon();
}
}
P.closeScope();
}
p.Comments = P.comments;
P.closeScope();
return p;
}