1
0
mirror of https://github.com/golang/go synced 2024-10-03 15:31:22 -06:00
go/src/pkg/runtime/os_darwin.c
Russ Cox d3066e47b1 runtime/pprof: test multithreaded profile, remove OS X workarounds
This means that pprof will no longer report profiles on OS X.
That's unfortunate, but the profiles were often wrong and, worse,
it was difficult to tell whether the profile was wrong or not.

The workarounds were making the scheduler more complex,
possibly caused a deadlock (see issue 5519), and did not actually
deliver reliable results.

It may be possible for adventurous users to apply a patch to
their kernels to get working results, or perhaps having no results
will encourage someone to do the work of creating a profiling
thread like on Windows. Issue 6047 has details.

Fixes #5519.
Fixes #6047.

R=golang-dev, bradfitz, r
CC=golang-dev
https://golang.org/cl/12429045
2013-08-05 19:49:02 -04:00

519 lines
11 KiB
C

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
#include "signal_unix.h"
#include "stack.h"
extern SigTab runtime·sigtab[];
static Sigset sigset_none;
static Sigset sigset_all = ~(Sigset)0;
static void
unimplemented(int8 *name)
{
runtime·prints(name);
runtime·prints(" not implemented\n");
*(int32*)1231 = 1231;
}
void
runtime·semawakeup(M *mp)
{
runtime·mach_semrelease(mp->waitsema);
}
uintptr
runtime·semacreate(void)
{
return runtime·mach_semcreate();
}
// BSD interface for threading.
void
runtime·osinit(void)
{
// bsdthread_register delayed until end of goenvs so that we
// can look at the environment first.
// Use sysctl to fetch hw.ncpu.
uint32 mib[2];
uint32 out;
int32 ret;
uintptr nout;
mib[0] = 6;
mib[1] = 3;
nout = sizeof out;
out = 0;
ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0);
if(ret >= 0)
runtime·ncpu = out;
}
void
runtime·get_random_data(byte **rnd, int32 *rnd_len)
{
static byte urandom_data[HashRandomBytes];
int32 fd;
fd = runtime·open("/dev/urandom", 0 /* O_RDONLY */, 0);
if(runtime·read(fd, urandom_data, HashRandomBytes) == HashRandomBytes) {
*rnd = urandom_data;
*rnd_len = HashRandomBytes;
} else {
*rnd = nil;
*rnd_len = 0;
}
runtime·close(fd);
}
void
runtime·goenvs(void)
{
runtime·goenvs_unix();
// Register our thread-creation callback (see sys_darwin_{amd64,386}.s)
// but only if we're not using cgo. If we are using cgo we need
// to let the C pthread library install its own thread-creation callback.
if(!runtime·iscgo) {
if(runtime·bsdthread_register() != 0) {
if(runtime·getenv("DYLD_INSERT_LIBRARIES"))
runtime·throw("runtime: bsdthread_register error (unset DYLD_INSERT_LIBRARIES)");
runtime·throw("runtime: bsdthread_register error");
}
}
}
void
runtime·newosproc(M *mp, void *stk)
{
int32 errno;
Sigset oset;
mp->tls[0] = mp->id; // so 386 asm can find it
if(0){
runtime·printf("newosproc stk=%p m=%p g=%p id=%d/%d ostk=%p\n",
stk, mp, mp->g0, mp->id, (int32)mp->tls[0], &mp);
}
runtime·sigprocmask(SIG_SETMASK, &sigset_all, &oset);
errno = runtime·bsdthread_create(stk, mp, mp->g0, runtime·mstart);
runtime·sigprocmask(SIG_SETMASK, &oset, nil);
if(errno < 0) {
runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), -errno);
runtime·throw("runtime.newosproc");
}
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
void
runtime·mpreinit(M *mp)
{
mp->gsignal = runtime·malg(32*1024); // OS X wants >=8K, Linux >=2K
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, can not allocate memory.
void
runtime·minit(void)
{
// Initialize signal handling.
runtime·signalstack((byte*)m->gsignal->stackguard - StackGuard, 32*1024);
runtime·sigprocmask(SIG_SETMASK, &sigset_none, nil);
}
// Called from dropm to undo the effect of an minit.
void
runtime·unminit(void)
{
runtime·signalstack(nil, 0);
}
// Mach IPC, to get at semaphores
// Definitions are in /usr/include/mach on a Mac.
#pragma textflag 7
static void
macherror(int32 r, int8 *fn)
{
runtime·prints("mach error ");
runtime·prints(fn);
runtime·prints(": ");
runtime·printint(r);
runtime·prints("\n");
runtime·throw("mach error");
}
enum
{
DebugMach = 0
};
static MachNDR zerondr;
#define MACH_MSGH_BITS(a, b) ((a) | ((b)<<8))
static int32
mach_msg(MachHeader *h,
int32 op,
uint32 send_size,
uint32 rcv_size,
uint32 rcv_name,
uint32 timeout,
uint32 notify)
{
// TODO: Loop on interrupt.
return runtime·mach_msg_trap(h, op, send_size, rcv_size, rcv_name, timeout, notify);
}
// Mach RPC (MIG)
enum
{
MinMachMsg = 48,
Reply = 100,
};
#pragma pack on
typedef struct CodeMsg CodeMsg;
struct CodeMsg
{
MachHeader h;
MachNDR NDR;
int32 code;
};
#pragma pack off
static int32
machcall(MachHeader *h, int32 maxsize, int32 rxsize)
{
uint32 *p;
int32 i, ret, id;
uint32 port;
CodeMsg *c;
if((port = m->machport) == 0){
port = runtime·mach_reply_port();
m->machport = port;
}
h->msgh_bits |= MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND_ONCE);
h->msgh_local_port = port;
h->msgh_reserved = 0;
id = h->msgh_id;
if(DebugMach){
p = (uint32*)h;
runtime·prints("send:\t");
for(i=0; i<h->msgh_size/sizeof(p[0]); i++){
runtime·prints(" ");
runtime·printpointer((void*)p[i]);
if(i%8 == 7)
runtime·prints("\n\t");
}
if(i%8)
runtime·prints("\n");
}
ret = mach_msg(h, MACH_SEND_MSG|MACH_RCV_MSG,
h->msgh_size, maxsize, port, 0, 0);
if(ret != 0){
if(DebugMach){
runtime·prints("mach_msg error ");
runtime·printint(ret);
runtime·prints("\n");
}
return ret;
}
if(DebugMach){
p = (uint32*)h;
runtime·prints("recv:\t");
for(i=0; i<h->msgh_size/sizeof(p[0]); i++){
runtime·prints(" ");
runtime·printpointer((void*)p[i]);
if(i%8 == 7)
runtime·prints("\n\t");
}
if(i%8)
runtime·prints("\n");
}
if(h->msgh_id != id+Reply){
if(DebugMach){
runtime·prints("mach_msg reply id mismatch ");
runtime·printint(h->msgh_id);
runtime·prints(" != ");
runtime·printint(id+Reply);
runtime·prints("\n");
}
return -303; // MIG_REPLY_MISMATCH
}
// Look for a response giving the return value.
// Any call can send this back with an error,
// and some calls only have return values so they
// send it back on success too. I don't quite see how
// you know it's one of these and not the full response
// format, so just look if the message is right.
c = (CodeMsg*)h;
if(h->msgh_size == sizeof(CodeMsg)
&& !(h->msgh_bits & MACH_MSGH_BITS_COMPLEX)){
if(DebugMach){
runtime·prints("mig result ");
runtime·printint(c->code);
runtime·prints("\n");
}
return c->code;
}
if(h->msgh_size != rxsize){
if(DebugMach){
runtime·prints("mach_msg reply size mismatch ");
runtime·printint(h->msgh_size);
runtime·prints(" != ");
runtime·printint(rxsize);
runtime·prints("\n");
}
return -307; // MIG_ARRAY_TOO_LARGE
}
return 0;
}
// Semaphores!
enum
{
Tmach_semcreate = 3418,
Rmach_semcreate = Tmach_semcreate + Reply,
Tmach_semdestroy = 3419,
Rmach_semdestroy = Tmach_semdestroy + Reply,
// Mach calls that get interrupted by Unix signals
// return this error code. We retry them.
KERN_ABORTED = 14,
KERN_OPERATION_TIMED_OUT = 49,
};
typedef struct Tmach_semcreateMsg Tmach_semcreateMsg;
typedef struct Rmach_semcreateMsg Rmach_semcreateMsg;
typedef struct Tmach_semdestroyMsg Tmach_semdestroyMsg;
// Rmach_semdestroyMsg = CodeMsg
#pragma pack on
struct Tmach_semcreateMsg
{
MachHeader h;
MachNDR ndr;
int32 policy;
int32 value;
};
struct Rmach_semcreateMsg
{
MachHeader h;
MachBody body;
MachPort semaphore;
};
struct Tmach_semdestroyMsg
{
MachHeader h;
MachBody body;
MachPort semaphore;
};
#pragma pack off
uint32
runtime·mach_semcreate(void)
{
union {
Tmach_semcreateMsg tx;
Rmach_semcreateMsg rx;
uint8 pad[MinMachMsg];
} m;
int32 r;
m.tx.h.msgh_bits = 0;
m.tx.h.msgh_size = sizeof(m.tx);
m.tx.h.msgh_remote_port = runtime·mach_task_self();
m.tx.h.msgh_id = Tmach_semcreate;
m.tx.ndr = zerondr;
m.tx.policy = 0; // 0 = SYNC_POLICY_FIFO
m.tx.value = 0;
while((r = machcall(&m.tx.h, sizeof m, sizeof(m.rx))) != 0){
if(r == KERN_ABORTED) // interrupted
continue;
macherror(r, "semaphore_create");
}
if(m.rx.body.msgh_descriptor_count != 1)
unimplemented("mach_semcreate desc count");
return m.rx.semaphore.name;
}
void
runtime·mach_semdestroy(uint32 sem)
{
union {
Tmach_semdestroyMsg tx;
uint8 pad[MinMachMsg];
} m;
int32 r;
m.tx.h.msgh_bits = MACH_MSGH_BITS_COMPLEX;
m.tx.h.msgh_size = sizeof(m.tx);
m.tx.h.msgh_remote_port = runtime·mach_task_self();
m.tx.h.msgh_id = Tmach_semdestroy;
m.tx.body.msgh_descriptor_count = 1;
m.tx.semaphore.name = sem;
m.tx.semaphore.disposition = MACH_MSG_TYPE_MOVE_SEND;
m.tx.semaphore.type = 0;
while((r = machcall(&m.tx.h, sizeof m, 0)) != 0){
if(r == KERN_ABORTED) // interrupted
continue;
macherror(r, "semaphore_destroy");
}
}
// The other calls have simple system call traps in sys_darwin_{amd64,386}.s
int32 runtime·mach_semaphore_wait(uint32 sema);
int32 runtime·mach_semaphore_timedwait(uint32 sema, uint32 sec, uint32 nsec);
int32 runtime·mach_semaphore_signal(uint32 sema);
int32 runtime·mach_semaphore_signal_all(uint32 sema);
#pragma textflag 7
int32
runtime·semasleep(int64 ns)
{
int32 r, secs, nsecs;
if(ns >= 0) {
secs = runtime·timediv(ns, 1000000000, &nsecs);
r = runtime·mach_semaphore_timedwait(m->waitsema, secs, nsecs);
if(r == KERN_ABORTED || r == KERN_OPERATION_TIMED_OUT)
return -1;
if(r != 0)
macherror(r, "semaphore_wait");
return 0;
}
while((r = runtime·mach_semaphore_wait(m->waitsema)) != 0) {
if(r == KERN_ABORTED) // interrupted
continue;
macherror(r, "semaphore_wait");
}
return 0;
}
void
runtime·mach_semrelease(uint32 sem)
{
int32 r;
while((r = runtime·mach_semaphore_signal(sem)) != 0) {
if(r == KERN_ABORTED) // interrupted
continue;
macherror(r, "semaphore_signal");
}
}
void
runtime·sigpanic(void)
{
switch(g->sig) {
case SIGBUS:
if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000) {
if(g->sigpc == 0)
runtime·panicstring("call of nil func value");
runtime·panicstring("invalid memory address or nil pointer dereference");
}
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case SIGSEGV:
if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000) {
if(g->sigpc == 0)
runtime·panicstring("call of nil func value");
runtime·panicstring("invalid memory address or nil pointer dereference");
}
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case SIGFPE:
switch(g->sigcode0) {
case FPE_INTDIV:
runtime·panicstring("integer divide by zero");
case FPE_INTOVF:
runtime·panicstring("integer overflow");
}
runtime·panicstring("floating point error");
}
runtime·panicstring(runtime·sigtab[g->sig].name);
}
#pragma textflag 7
void
runtime·osyield(void)
{
runtime·usleep(1);
}
uintptr
runtime·memlimit(void)
{
// NOTE(rsc): Could use getrlimit here,
// like on FreeBSD or Linux, but Darwin doesn't enforce
// ulimit -v, so it's unclear why we'd try to stay within
// the limit.
return 0;
}
void
runtime·setsig(int32 i, GoSighandler *fn, bool restart)
{
Sigaction sa;
runtime·memclr((byte*)&sa, sizeof sa);
sa.sa_flags = SA_SIGINFO|SA_ONSTACK;
if(restart)
sa.sa_flags |= SA_RESTART;
sa.sa_mask = ~(uintptr)0;
sa.sa_tramp = (void*)runtime·sigtramp; // runtime·sigtramp's job is to call into real handler
*(uintptr*)sa.__sigaction_u = (uintptr)fn;
runtime·sigaction(i, &sa, nil);
}
GoSighandler*
runtime·getsig(int32 i)
{
Sigaction sa;
runtime·memclr((byte*)&sa, sizeof sa);
runtime·sigaction(i, nil, &sa);
return *(void**)sa.__sigaction_u;
}
void
runtime·signalstack(byte *p, int32 n)
{
StackT st;
st.ss_sp = (void*)p;
st.ss_size = n;
st.ss_flags = 0;
if(p == nil)
st.ss_flags = SS_DISABLE;
runtime·sigaltstack(&st, nil);
}