
The
Go

Programming Language

Part 3

Rob Pike
r@google.com
October, 2009

Wednesday, October 21, 2009

mailto:r@google.com
mailto:r@google.com

Today’s Outline

Exercise
 any questions?

Concurrency and communication
goroutines
channels
concurrency issues

Wednesday, October 21, 2009

Exercise

Any questions?

For a trivial HTTP server with various generators, see

http://golang.org/src/pkg/http/triv.go

Wednesday, October 21, 2009

http://golang.org/pkg/http/triv.go
http://golang.org/pkg/http/triv.go

Concurrency and communication:
Goroutines

Wednesday, October 21, 2009

Goroutines

Terminology:

There are many terms for "things that run
concurrently" - process, thread, coroutine, POSIX
thread, NPTL thread, lightweight process, ..., but
these all mean slightly different things. None
means exactly how Go does concurrency.

So we introduce a new term: goroutine.

Wednesday, October 21, 2009

Definition

A goroutine is a Go function or method executing
concurrently in the same address space as other
goroutines. A running program consists of one or
more goroutines.

It's not the same as a thread, coroutine, process,
etc. It's a goroutine.

There are many concurrency questions. They will
be addressed later; for now just assume it all
works as advertised.

Wednesday, October 21, 2009

Starting a goroutine
Invoke a function or method and say go:

func IsReady(what string, minutes int64) {
 time.Sleep(minutes * 60*1e9);
 fmt.Println(what, "is ready")
}

go IsReady("tea", 6);
go IsReady("coffee", 2);
fmt.Println("I'm waiting....");

Prints:
I'm waiting.... (right away)
coffee is ready (2 min later)
tea is ready (6 min later)

Wednesday, October 21, 2009

Some simple facts

Goroutines are cheap.

Goroutines exit by returning from their top-
level function, or just falling off the end. Or
they can call runtime.Goexit(), although
that's rarely necessary.

Goroutines can run concurrently on different
processors, sharing memory.

You don't have to worry about stack size.

Wednesday, October 21, 2009

Stacks

In gccgo, at least for now, goroutines are pthreads.
Stacks are big. We will fix this soon (our solution
requires changes to gcc itself).

In 6g, however, stacks are small (a few kB) and grow
as needed. Thus in 6g, goroutines use little memory,
you can have lots of them, and they can dynamically
have huge stacks.

The programmer shouldn't have to think about the
issue.

Wednesday, October 21, 2009

Scheduling
Goroutines are multiplexed as needed onto
system threads. When a goroutine executes
a blocking system call, no other goroutine is
blocked.

We will do the same for CPU-bound
goroutines at some point, but for now, if you
want user-level parallelism you must set
$GOMAXPROCS. or call runtime.GOMAXPROCS(n).

GOMAXPROCS tells the runtime scheduler how
many non-syscall-blocked goroutines to run
at once.

Wednesday, October 21, 2009

Concurrency and communication:
Channels

Wednesday, October 21, 2009

Channels in Go
Unless two goroutines can communicate, they
can't coordinate.

Go has a type called a channel that provides
communication and synchronization
capabilities.

It also has special control structures that
build on channels to make concurrent
programming easy.

Note: I gave a talk in 2006 about predecessor
stuff in an older language. The talk is on
Google video; if you want more background,
look for "rob pike" and "newsqueak".

Wednesday, October 21, 2009

The channel type
In its simplest form the type looks like this:

chan element_type

Given a value of this type, you can send and
receive items of element_type.

Channels are a reference type, which means if
you assign one chan variable to another, both
variables access the same channel. It also
means you use make to allocate one:

var c = make(chan int)

Wednesday, October 21, 2009

The communication operator: <-
The arrow points in the direction of data flow.

As a binary operator, <- sends to a channel:
var c chan int;
c <- 1; // send 1 on c (flowing into c)

As a prefix unary operator, <- receives from a
channel:

v = <-c; // receive value from c, assign to v
<-c; // receive value, throw it away
i := <-c; // receive value, initialize i

Wednesday, October 21, 2009

Semantics

By default, communication is synchronous. (We'll
talk about asynchronous communication later.)
This means:

1) A send operation on a channel blocks until a
receiver is available for the same channel.
2) A receive operation for a channel blocks until a
sender is available for the same channel.

Communication is therefore a form of
synchronization: two goroutines exchanging data
through a channel synchronize at the moment of
communication.

Wednesday, October 21, 2009

Let's pump some data
func pump(ch chan int) {
for i := 0; ; i++ { ch <- i }

}

ch1 := make(chan int);
go pump(ch1); // pump hangs; we run
fmt.Println(<-ch1); // prints 0

Now we start a looping receiver.
func suck(ch chan int) {
for { fmt.Println(<-ch) }

}
go suck(ch1); // tons of numbers appear

You can still sneak in and grab a value:
fmt.Println(<-ch); // Prints 314159

Wednesday, October 21, 2009

Functions returning channels
In the previous example, pump was like a generator
spewing out values. But there was a lot of fuss
allocating channels etc. Let's package it up into a
function returning the channel of values.
func pump() chan int {
 ch := make(chan int);
 go func() {
 for i := 0; ; i++ { ch <- i }
 }();
 return ch
}

stream := pump();
fmt.Println(<-stream); // prints 0

This is a very important idiom.

Wednesday, October 21, 2009

Channel functions everywhere

I am avoiding repeating famous examples you can
find elsewhere. Here are a couple to look up:

1) The prime sieve; in the language specification and
also in the tutorial.

2) Doug McIlroy's power series work.
Read This Paper!

Look for "Doug McIlroy" "Squinting at Power Series".
The Go version of this program is in available in the
test suite as
 http://golang.org/test/chan/powser1.go

Wednesday, October 21, 2009

http://golang.org/test/chan/powser1.go
http://golang.org/test/chan/powser1.go

Range and channels

The range clause on for loops accepts a channel
as an operand, in which case the for loops over
the values received from the channel. We
rewrote pump; here's the rewrite for suck, making
it launch the goroutine as well:

func suck(ch chan int) {
 go func() {
 for v := range ch { fmt.Println(v) }

 }()
}

suck(pump()); // doesn't block now

Wednesday, October 21, 2009

Closing a channel

What if we want to signal that a channel is done?
We close it with a built-in function:
close(ch)

and test that state using closed():
if closed(ch) { fmt.Println("done") }

Once a channel is closed and every sent value
has been received, every subsequent receive
operation will recover a zero value.

In practice, you rarely need close except in
certain idiomatic situations.

Wednesday, October 21, 2009

When a channel closes
There are subtleties about races, so closed()
succeeds only after you receive one zero value on
the channel. The obvious loop isn't right. To use
closed() correctly you need to say:
for {
v := <-ch;
if closed(ch) { break }
fmt.Println(v)

}

But of course, the range clause does that for you.
for v := range ch {
fmt.Println(v)

}

Wednesday, October 21, 2009

Iterators
Now we have all the pieces to write an iterator for a
container. Here is the code for Vector:
// Iterate over all elements
func (p *Vector) iterate(c chan Element) {
 for i, v := range p.a { // p.a is a slice
 c <- v
 }
 close(c); // signal no more values
}

// Channel iterator.
func (p *Vector) Iter() chan Element {
 c := make(chan Element);
 go p.iterate(c);
 return c;
}

Wednesday, October 21, 2009

Using the iterator
Now that Vector has an iterator, we can use it:

vec := new(vector.Vector);
for i := 0; i < 100; i++ {
 vec.Push(i*i)
}

i := 0;
for x := range vec.Iter() {
 fmt.Printf("vec[%d] is %d\n", i, x.(int));
 i++;
}

Wednesday, October 21, 2009

Channel directionality

In its simplest form a channel variable is an
unbuffered (synchronous) value that can be used to
send and receive.

A channel type may be annotated to specify that it
may only send or only receive:

var recv_only <-chan int;
var send_only chan<- int;

Wednesday, October 21, 2009

Channel directionality (II)
All channels are created bidirectional, but we can
assign them to directional channel variables.
Useful for instance in functions, for (type) safety:

func sink(ch <-chan int) {
 for { <-ch }
}
func source(ch chan<- int) {
 for { ch <- 1 }
}

var c = make(chan int); // bidirectional
go source(c);
go sink(c);

Wednesday, October 21, 2009

Synchronous channels
Synchronous channels are unbuffered. Sends do not
complete until a receiver has accepted the value.

c := make(chan int);
go func() {
 time.Sleep(60*1e9);
 x := <-c;
 fmt.Println("received", x);
}();

fmt.Println("sending", 10);
c <- 10;
fmt.Println("sent", 10);

Output:
sending 10 (happens immediately)
sent 10 (60s later, these 2 lines appear)
received 10

Wednesday, October 21, 2009

Asynchronous channels
A buffered, asynchronous channel can be created by
giving make an argument, the number of elements in
the buffer.
c := make(chan int, 50);
go func() {
 time.Sleep(60*1e9);
 x := <-c;
 fmt.Println("received", x);
}();

fmt.Println("sending", 10);
c <- 10;
fmt.Println("sent", 10);

Output:
sending 10 (happens immediately)
sent 10 (now)
received 10 (60s later)

Wednesday, October 21, 2009

Buffer is not part of the type

Note that the buffer's size, or even its existence, is
not part of the channel's type, only of the value.
This code is therefore legal, although dangerous:
buf = make(chan int, 1);
unbuf = make(chan int);
buf = unbuf;
unbuf = buf;

Buffering is a property of the value, not of the type.

Wednesday, October 21, 2009

Testing for communicability
Can a receive proceed without blocking? Need to
find out and execute, or not, atomically.
"Comma ok" to the rescue:
v, ok = <-c; // ok=true if v received value

Can a send proceed without blocking? Need to find
out and execute, or not, atomically. Use send as a
boolean expression:
ok := c <- v;

or
if c <- v { fmt.Println("sent value") }

But usually you want more...

Wednesday, October 21, 2009

Select
Select is a control structure in Go analogous to a
communications switch statement. Each case must
be a communication, either send or receive.
var c1, c2 chan int;

select {
case v := <-c1:
 fmt.Printf("received %d from c1\n", v)
case v := <-c2:
 fmt.Printf("received %d from c2\n", v)
}

Select executes one runnable case at random. If no
case is runnable, it blocks until one is. A default
clause is always runnable.

Wednesday, October 21, 2009

Select semantics
Quick summary:

- Every case must be a (possibly :=) communication
- All channel expressions are evaluated
- All expressions to be sent are evaluated
- If any communication can proceed, it does; others
 are ignored
- Otherwise:

- If there is a default clause, that runs
- If there is no default, select statement blocks
 until one communication can proceed; there is
 no re-evaluation of channels or values

- If multiple cases are ready, one is selected at
 random, fairly. Others do not execute.

Wednesday, October 21, 2009

Random bit generator
Silly but illustrative example.
c := make(chan int);
go func() {
 for {
 fmt.Println(<-c)
 }
}();

for {
 select {
 case c <- 0: // no stmt, no fall through
 case c <- 1:
 }
}

Prints 0 1 1 0 0 1 1 1 0 1 ...
Wednesday, October 21, 2009

Multiplexing
Channels are first-class values, which means they
can be sent over channels. This property makes it
easy to write a service multiplexer since the client
can supply, along with its request, the channel on
which to reply.

chanOfChans := make(chan chan int)

Or more typically

type Reply struct { ... }
type Request struct {
arg1, arg2, arg3 some_type;
replyc chan *Reply;

}

Wednesday, October 21, 2009

Multiplexing server
type request struct {
 a, b int;
 replyc chan int;
}

type binOp func(a, b int) int

func run(op binOp, req *request) {
 req.replyc <- op(req.a, req.b)
}

func server(op binOp, service chan *request) {
 for {
 req := <-service; // requests arrive here
 go run(op, req); // don't wait for op
 }
}

Wednesday, October 21, 2009

Starting the server
Use the channel function pattern to create a channel
to a new server:

func startServer(op binOp) chan *request {
 req := make(chan *request);
 go server(op, req);
 return req
}

 var adderChan = startServer(
 func(a, b int) int { return a + b }
)

Wednesday, October 21, 2009

The client
A similar example is worked in more detail in the
tutorial, but here's a variant:
func (r *request) String() string {
 return fmt.Sprintf("%d+%d=%d",
 r.a, r.b, <-r.replyc)
}

req1 := &request{ 7, 8, make(chan int) };
req2 := &request{ 17, 18, make(chan int) };

Requests ready; send them:
adderChan <- req1;
adderChan <- req2;

Can retrieve results in any order; r.replyc demuxes:
fmt.Println(req2, req1);

Wednesday, October 21, 2009

Teardown
In the mux example, the server runs forever. To
tear it down cleanly, signal with a channel. This
server has the same functionality but with a quit
channel:
func server(op binOp, service chan *request,
 quit chan bool) {
 for {
 select {
 case req := <-service:
 go run(op, req); // don't wait for it
 case <-quit:
 return;
 }
 }
}

Wednesday, October 21, 2009

Starting the server
The rest of the code is mostly the same, with an extra
channel:

func startServer(op binOp) (service chan *request,
 quit chan bool) {
 service = make(chan *request);
 quit = make(chan bool);
 go server(op, service, quit);
 return service, quit;
}

var adderChan, quitChan := startServer(
 func(a, b int) int { return a + b }
)

Wednesday, October 21, 2009

Teardown: the client
The client is unaffected until it's ready to shut down
the server:

req1 := &request{7, 8, make(chan int)};
req2 := &request{17, 18, make(chan int)};

adderChan <- req1;
adderChan <- req2;

fmt.Println(req2, req1);

All done, signal server to exit:

 quitChan <- true;

Wednesday, October 21, 2009

Chaining
package main

import ("flag"; "fmt")

var ngoroutine = flag.Int("n", 100000, "how many")

func f(left, right chan int) { left <- 1 + <-right }

func main() {
 flag.Parse();
 leftmost := make(chan int);
 var left, right chan int = nil, leftmost;
 for i := 0; i < *ngoroutine; i++ {
 left, right = right, make(chan int);
 go f(left, right);
 }
 right <- 0; // bang!
 x := <-leftmost; // wait for completion
 fmt.Println(x); // 100000
}

Wednesday, October 21, 2009

Example: Leaky bucket
Queue of shared, reusable buffers
var freeList = make(chan *Buffer, 100)
var serverChan = make(chan *Buffer)

func server() {
 for {
 b := <-serverChan; // wait for work
 process(b);
 ok := freeList <- b // reuse buffer if room
 }
}
func client() {
 for {
 b, ok := <-freeList; // grab one if available
 if !ok { b = new(Buffer) }
 load(b);
 serverChan <- b // send to server
 }
}

Wednesday, October 21, 2009

Concurrency

Wednesday, October 21, 2009

Concurrency issues

Many issues, of course, but Go tries to take care of
them. Channel send and receive are atomic. The
select statement is very carefully defined and
implemented, etc.

But goroutines run in shared memory,
communication networks can deadlock,
multithreaded debuggers suck, and so on.

What to do?

Wednesday, October 21, 2009

Go gives you the primitives

Don't program the way you would in C or C++ or
even Java.

Channels give you synchronization and
communication both, and that makes them powerful
but also easy to reason about if you use them well.

The rule is:

Do not communicate by sharing memory.
Instead, share memory by communicating.

The very act of communication guarantees
synchronization!

Wednesday, October 21, 2009

The model

For instance, use a channel to send data to a
dedicated server goroutine. If only one goroutine at
a time has a pointer to the data, there are no
concurrency issues.

This is the model we advocate for programming
servers, at least. It's the old "one thread per client"
approach, generalized - and used by us since the
1980s. It works very well.

My old talk on Google video goes into this idea in
more depth.

Wednesday, October 21, 2009

The memory model

The nasty details about synchronization and shared
memory are written down at:

http://www/~r/go_mem.html

But you rarely need to understand them if you follow
our approach.

Wednesday, October 21, 2009

The
Go

Programming Language

Part 3

Rob Pike
r@google.com
October, 2009

Wednesday, October 21, 2009

mailto:r@google.com
mailto:r@google.com

