// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import "unsafe" const ( c0 = uintptr((8-ptrSize)/4*2860486313 + (ptrSize-4)/4*33054211828000289) c1 = uintptr((8-ptrSize)/4*3267000013 + (ptrSize-4)/4*23344194077549503) ) // type algorithms - known to compiler const ( alg_MEM = iota alg_MEM0 alg_MEM8 alg_MEM16 alg_MEM32 alg_MEM64 alg_MEM128 alg_NOEQ alg_NOEQ0 alg_NOEQ8 alg_NOEQ16 alg_NOEQ32 alg_NOEQ64 alg_NOEQ128 alg_STRING alg_INTER alg_NILINTER alg_SLICE alg_FLOAT32 alg_FLOAT64 alg_CPLX64 alg_CPLX128 alg_max ) type typeAlg struct { // function for hashing objects of this type // (ptr to object, seed) -> hash hash func(unsafe.Pointer, uintptr) uintptr // function for comparing objects of this type // (ptr to object A, ptr to object B) -> ==? equal func(unsafe.Pointer, unsafe.Pointer) bool } func memhash0(p unsafe.Pointer, h uintptr) uintptr { return h } func memhash8(p unsafe.Pointer, h uintptr) uintptr { return memhash(p, h, 1) } func memhash16(p unsafe.Pointer, h uintptr) uintptr { return memhash(p, h, 2) } func memhash32(p unsafe.Pointer, h uintptr) uintptr { return memhash(p, h, 4) } func memhash64(p unsafe.Pointer, h uintptr) uintptr { return memhash(p, h, 8) } func memhash128(p unsafe.Pointer, h uintptr) uintptr { return memhash(p, h, 16) } // memhash_varlen is defined in assembly because it needs access // to the closure. It appears here to provide an argument // signature for the assembly routine. func memhash_varlen(p unsafe.Pointer, h uintptr) uintptr var algarray = [alg_max]typeAlg{ alg_MEM: {nil, nil}, // not used alg_MEM0: {memhash0, memequal0}, alg_MEM8: {memhash8, memequal8}, alg_MEM16: {memhash16, memequal16}, alg_MEM32: {memhash32, memequal32}, alg_MEM64: {memhash64, memequal64}, alg_MEM128: {memhash128, memequal128}, alg_NOEQ: {nil, nil}, alg_NOEQ0: {nil, nil}, alg_NOEQ8: {nil, nil}, alg_NOEQ16: {nil, nil}, alg_NOEQ32: {nil, nil}, alg_NOEQ64: {nil, nil}, alg_NOEQ128: {nil, nil}, alg_STRING: {strhash, strequal}, alg_INTER: {interhash, interequal}, alg_NILINTER: {nilinterhash, nilinterequal}, alg_SLICE: {nil, nil}, alg_FLOAT32: {f32hash, f32equal}, alg_FLOAT64: {f64hash, f64equal}, alg_CPLX64: {c64hash, c64equal}, alg_CPLX128: {c128hash, c128equal}, } var useAeshash bool // in asm_*.s func aeshash(p unsafe.Pointer, h, s uintptr) uintptr func aeshash32(p unsafe.Pointer, h uintptr) uintptr func aeshash64(p unsafe.Pointer, h uintptr) uintptr func aeshashstr(p unsafe.Pointer, h uintptr) uintptr func strhash(a unsafe.Pointer, h uintptr) uintptr { x := (*stringStruct)(a) return memhash(x.str, h, uintptr(x.len)) } // NOTE: Because NaN != NaN, a map can contain any // number of (mostly useless) entries keyed with NaNs. // To avoid long hash chains, we assign a random number // as the hash value for a NaN. func f32hash(p unsafe.Pointer, h uintptr) uintptr { f := *(*float32)(p) switch { case f == 0: return c1 * (c0 ^ h) // +0, -0 case f != f: return c1 * (c0 ^ h ^ uintptr(fastrand1())) // any kind of NaN default: return memhash(p, h, 4) } } func f64hash(p unsafe.Pointer, h uintptr) uintptr { f := *(*float64)(p) switch { case f == 0: return c1 * (c0 ^ h) // +0, -0 case f != f: return c1 * (c0 ^ h ^ uintptr(fastrand1())) // any kind of NaN default: return memhash(p, h, 8) } } func c64hash(p unsafe.Pointer, h uintptr) uintptr { x := (*[2]float32)(p) return f32hash(unsafe.Pointer(&x[1]), f32hash(unsafe.Pointer(&x[0]), h)) } func c128hash(p unsafe.Pointer, h uintptr) uintptr { x := (*[2]float64)(p) return f64hash(unsafe.Pointer(&x[1]), f64hash(unsafe.Pointer(&x[0]), h)) } func interhash(p unsafe.Pointer, h uintptr) uintptr { a := (*iface)(p) tab := a.tab if tab == nil { return h } t := tab._type fn := t.alg.hash if fn == nil { panic(errorString("hash of unhashable type " + *t._string)) } if isDirectIface(t) { return c1 * fn(unsafe.Pointer(&a.data), h^c0) } else { return c1 * fn(a.data, h^c0) } } func nilinterhash(p unsafe.Pointer, h uintptr) uintptr { a := (*eface)(p) t := a._type if t == nil { return h } fn := t.alg.hash if fn == nil { panic(errorString("hash of unhashable type " + *t._string)) } if isDirectIface(t) { return c1 * fn(unsafe.Pointer(&a.data), h^c0) } else { return c1 * fn(a.data, h^c0) } } func memequal(p, q unsafe.Pointer, size uintptr) bool { if p == q { return true } return memeq(p, q, size) } func memequal0(p, q unsafe.Pointer) bool { return true } func memequal8(p, q unsafe.Pointer) bool { return *(*int8)(p) == *(*int8)(q) } func memequal16(p, q unsafe.Pointer) bool { return *(*int16)(p) == *(*int16)(q) } func memequal32(p, q unsafe.Pointer) bool { return *(*int32)(p) == *(*int32)(q) } func memequal64(p, q unsafe.Pointer) bool { return *(*int64)(p) == *(*int64)(q) } func memequal128(p, q unsafe.Pointer) bool { return *(*[2]int64)(p) == *(*[2]int64)(q) } func f32equal(p, q unsafe.Pointer) bool { return *(*float32)(p) == *(*float32)(q) } func f64equal(p, q unsafe.Pointer) bool { return *(*float64)(p) == *(*float64)(q) } func c64equal(p, q unsafe.Pointer) bool { return *(*complex64)(p) == *(*complex64)(q) } func c128equal(p, q unsafe.Pointer) bool { return *(*complex128)(p) == *(*complex128)(q) } func strequal(p, q unsafe.Pointer) bool { return *(*string)(p) == *(*string)(q) } func interequal(p, q unsafe.Pointer) bool { return ifaceeq(*(*interface { f() })(p), *(*interface { f() })(q)) } func nilinterequal(p, q unsafe.Pointer) bool { return efaceeq(*(*interface{})(p), *(*interface{})(q)) } func efaceeq(p, q interface{}) bool { x := (*eface)(unsafe.Pointer(&p)) y := (*eface)(unsafe.Pointer(&q)) t := x._type if t != y._type { return false } if t == nil { return true } eq := t.alg.equal if eq == nil { panic(errorString("comparing uncomparable type " + *t._string)) } if isDirectIface(t) { return eq(noescape(unsafe.Pointer(&x.data)), noescape(unsafe.Pointer(&y.data))) } return eq(x.data, y.data) } func ifaceeq(p, q interface { f() }) bool { x := (*iface)(unsafe.Pointer(&p)) y := (*iface)(unsafe.Pointer(&q)) xtab := x.tab if xtab != y.tab { return false } if xtab == nil { return true } t := xtab._type eq := t.alg.equal if eq == nil { panic(errorString("comparing uncomparable type " + *t._string)) } if isDirectIface(t) { return eq(noescape(unsafe.Pointer(&x.data)), noescape(unsafe.Pointer(&y.data))) } return eq(x.data, y.data) } // Testing adapters for hash quality tests (see hash_test.go) func stringHash(s string, seed uintptr) uintptr { return algarray[alg_STRING].hash(noescape(unsafe.Pointer(&s)), seed) } func bytesHash(b []byte, seed uintptr) uintptr { s := (*sliceStruct)(unsafe.Pointer(&b)) return memhash(s.array, seed, uintptr(s.len)) } func int32Hash(i uint32, seed uintptr) uintptr { return algarray[alg_MEM32].hash(noescape(unsafe.Pointer(&i)), seed) } func int64Hash(i uint64, seed uintptr) uintptr { return algarray[alg_MEM64].hash(noescape(unsafe.Pointer(&i)), seed) } func efaceHash(i interface{}, seed uintptr) uintptr { return algarray[alg_NILINTER].hash(noescape(unsafe.Pointer(&i)), seed) } func ifaceHash(i interface { F() }, seed uintptr) uintptr { return algarray[alg_INTER].hash(noescape(unsafe.Pointer(&i)), seed) } // Testing adapter for memclr func memclrBytes(b []byte) { s := (*sliceStruct)(unsafe.Pointer(&b)) memclr(s.array, uintptr(s.len)) } const hashRandomBytes = ptrSize / 4 * 64 // used in asm_{386,amd64}.s to seed the hash function var aeskeysched [hashRandomBytes]byte // used in hash{32,64}.go to seed the hash function var hashkey [4]uintptr func init() { // Install aes hash algorithm if we have the instructions we need if (GOARCH == "386" || GOARCH == "amd64") && GOOS != "nacl" && cpuid_ecx&(1<<25) != 0 && // aes (aesenc) cpuid_ecx&(1<<9) != 0 && // sse3 (pshufb) cpuid_ecx&(1<<19) != 0 { // sse4.1 (pinsr{d,q}) useAeshash = true algarray[alg_MEM32].hash = aeshash32 algarray[alg_MEM64].hash = aeshash64 algarray[alg_STRING].hash = aeshashstr // Initialize with random data so hash collisions will be hard to engineer. getRandomData(aeskeysched[:]) return } getRandomData((*[len(hashkey) * ptrSize]byte)(unsafe.Pointer(&hashkey))[:]) hashkey[0] |= 1 // make sure this number is odd }