// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "zasm_GOOS_GOARCH.h" #include "funcdata.h" TEXT _rt0_go(SB),7,$0 // copy arguments forward on an even stack MOVL argc+0(FP), AX MOVL argv+4(FP), BX SUBL $128, SP // plenty of scratch ANDL $~15, SP MOVL AX, 120(SP) // save argc, argv away MOVL BX, 124(SP) // set default stack bounds. // _cgo_init may update stackguard. MOVL $runtime·g0(SB), BP LEAL (-64*1024+104)(SP), BX MOVL BX, g_stackguard(BP) MOVL BX, g_stackguard0(BP) MOVL SP, g_stackbase(BP) // find out information about the processor we're on MOVL $0, AX CPUID CMPL AX, $0 JE nocpuinfo MOVL $1, AX CPUID MOVL CX, runtime·cpuid_ecx(SB) MOVL DX, runtime·cpuid_edx(SB) nocpuinfo: // if there is an _cgo_init, call it to let it // initialize and to set up GS. if not, // we set up GS ourselves. MOVL _cgo_init(SB), AX TESTL AX, AX JZ needtls MOVL $setmg_gcc<>(SB), BX MOVL BX, 4(SP) MOVL BP, 0(SP) CALL AX // update stackguard after _cgo_init MOVL $runtime·g0(SB), CX MOVL g_stackguard0(CX), AX MOVL AX, g_stackguard(CX) // skip runtime·ldt0setup(SB) and tls test after _cgo_init for non-windows CMPL runtime·iswindows(SB), $0 JEQ ok needtls: // skip runtime·ldt0setup(SB) and tls test on Plan 9 in all cases CMPL runtime·isplan9(SB), $1 JEQ ok // set up %gs CALL runtime·ldt0setup(SB) // store through it, to make sure it works get_tls(BX) MOVL $0x123, g(BX) MOVL runtime·tls0(SB), AX CMPL AX, $0x123 JEQ ok MOVL AX, 0 // abort ok: // set up m and g "registers" get_tls(BX) LEAL runtime·g0(SB), CX MOVL CX, g(BX) LEAL runtime·m0(SB), AX MOVL AX, m(BX) // save m->g0 = g0 MOVL CX, m_g0(AX) CALL runtime·emptyfunc(SB) // fault if stack check is wrong // convention is D is always cleared CLD CALL runtime·check(SB) // saved argc, argv MOVL 120(SP), AX MOVL AX, 0(SP) MOVL 124(SP), AX MOVL AX, 4(SP) CALL runtime·args(SB) CALL runtime·osinit(SB) CALL runtime·hashinit(SB) CALL runtime·schedinit(SB) // create a new goroutine to start program PUSHL $runtime·main·f(SB) // entry PUSHL $0 // arg size ARGSIZE(8) CALL runtime·newproc(SB) ARGSIZE(-1) POPL AX POPL AX // start this M CALL runtime·mstart(SB) INT $3 RET DATA runtime·main·f+0(SB)/4,$runtime·main(SB) GLOBL runtime·main·f(SB),8,$4 TEXT runtime·breakpoint(SB),7,$0-0 INT $3 RET TEXT runtime·asminit(SB),7,$0-0 // Linux and MinGW start the FPU in extended double precision. // Other operating systems use double precision. // Change to double precision to match them, // and to match other hardware that only has double. PUSHL $0x27F FLDCW 0(SP) POPL AX RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), 7, $0-4 MOVL 4(SP), AX // gobuf LEAL 4(SP), BX // caller's SP MOVL BX, gobuf_sp(AX) MOVL 0(SP), BX // caller's PC MOVL BX, gobuf_pc(AX) MOVL $0, gobuf_ret(AX) MOVL $0, gobuf_ctxt(AX) get_tls(CX) MOVL g(CX), BX MOVL BX, gobuf_g(AX) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), 7, $0-4 MOVL 4(SP), BX // gobuf MOVL gobuf_g(BX), DX MOVL 0(DX), CX // make sure g != nil get_tls(CX) MOVL DX, g(CX) MOVL gobuf_sp(BX), SP // restore SP MOVL gobuf_ret(BX), AX MOVL gobuf_ctxt(BX), DX MOVL $0, gobuf_sp(BX) // clear to help garbage collector MOVL $0, gobuf_ret(BX) MOVL $0, gobuf_ctxt(BX) MOVL gobuf_pc(BX), BX JMP BX // void mcall(void (*fn)(G*)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), 7, $0-4 MOVL fn+0(FP), DI get_tls(CX) MOVL g(CX), AX // save state in g->sched MOVL 0(SP), BX // caller's PC MOVL BX, (g_sched+gobuf_pc)(AX) LEAL 4(SP), BX // caller's SP MOVL BX, (g_sched+gobuf_sp)(AX) MOVL AX, (g_sched+gobuf_g)(AX) // switch to m->g0 & its stack, call fn MOVL m(CX), BX MOVL m_g0(BX), SI CMPL SI, AX // if g == m->g0 call badmcall JNE 2(PC) CALL runtime·badmcall(SB) MOVL SI, g(CX) // g = m->g0 MOVL (g_sched+gobuf_sp)(SI), SP // sp = m->g0->sched.sp PUSHL AX CALL DI POPL AX CALL runtime·badmcall2(SB) RET /* * support for morestack */ // Called during function prolog when more stack is needed. // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),7,$0-0 // Cannot grow scheduler stack (m->g0). get_tls(CX) MOVL m(CX), BX MOVL m_g0(BX), SI CMPL g(CX), SI JNE 2(PC) INT $3 // frame size in DI // arg size in AX // Save in m. MOVL DI, m_moreframesize(BX) MOVL AX, m_moreargsize(BX) // Called from f. // Set m->morebuf to f's caller. MOVL 4(SP), DI // f's caller's PC MOVL DI, (m_morebuf+gobuf_pc)(BX) LEAL 8(SP), CX // f's caller's SP MOVL CX, (m_morebuf+gobuf_sp)(BX) MOVL CX, m_moreargp(BX) get_tls(CX) MOVL g(CX), SI MOVL SI, (m_morebuf+gobuf_g)(BX) // Set g->sched to context in f. MOVL 0(SP), AX // f's PC MOVL AX, (g_sched+gobuf_pc)(SI) MOVL SI, (g_sched+gobuf_g)(SI) LEAL 4(SP), AX // f's SP MOVL AX, (g_sched+gobuf_sp)(SI) MOVL DX, (g_sched+gobuf_ctxt)(SI) // Call newstack on m->g0's stack. MOVL m_g0(BX), BP MOVL BP, g(CX) MOVL (g_sched+gobuf_sp)(BP), AX MOVL -4(AX), BX // fault if CALL would, before smashing SP MOVL AX, SP CALL runtime·newstack(SB) MOVL $0, 0x1003 // crash if newstack returns RET // Called from reflection library. Mimics morestack, // reuses stack growth code to create a frame // with the desired args running the desired function. // // func call(fn *byte, arg *byte, argsize uint32). TEXT reflect·call(SB), 7, $0-12 get_tls(CX) MOVL m(CX), BX // Save our caller's state as the PC and SP to // restore when returning from f. MOVL 0(SP), AX // our caller's PC MOVL AX, (m_morebuf+gobuf_pc)(BX) LEAL 4(SP), AX // our caller's SP MOVL AX, (m_morebuf+gobuf_sp)(BX) MOVL g(CX), AX MOVL AX, (m_morebuf+gobuf_g)(BX) // Save our own state as the PC and SP to restore // if this goroutine needs to be restarted. MOVL $reflect·call(SB), (g_sched+gobuf_pc)(AX) MOVL SP, (g_sched+gobuf_sp)(AX) // Set up morestack arguments to call f on a new stack. // We set f's frame size to 1, as a hint to newstack // that this is a call from reflect·call. // If it turns out that f needs a larger frame than // the default stack, f's usual stack growth prolog will // allocate a new segment (and recopy the arguments). MOVL 4(SP), AX // fn MOVL 8(SP), DX // arg frame MOVL 12(SP), CX // arg size MOVL AX, m_cret(BX) // f's PC MOVL DX, m_moreargp(BX) // f's argument pointer MOVL CX, m_moreargsize(BX) // f's argument size MOVL $1, m_moreframesize(BX) // f's frame size // Call newstack on m->g0's stack. MOVL m_g0(BX), BP get_tls(CX) MOVL BP, g(CX) MOVL (g_sched+gobuf_sp)(BP), SP CALL runtime·newstack(SB) MOVL $0, 0x1103 // crash if newstack returns RET // Return point when leaving stack. // // Lessstack can appear in stack traces for the same reason // as morestack; in that context, it has 0 arguments. TEXT runtime·lessstack(SB), 7, $0-0 // Save return value in m->cret get_tls(CX) MOVL m(CX), BX MOVL AX, m_cret(BX) // Call oldstack on m->g0's stack. MOVL m_g0(BX), BP MOVL BP, g(CX) MOVL (g_sched+gobuf_sp)(BP), SP CALL runtime·oldstack(SB) MOVL $0, 0x1004 // crash if oldstack returns RET // bool cas(int32 *val, int32 old, int32 new) // Atomically: // if(*val == old){ // *val = new; // return 1; // }else // return 0; TEXT runtime·cas(SB), 7, $0-12 MOVL 4(SP), BX MOVL 8(SP), AX MOVL 12(SP), CX LOCK CMPXCHGL CX, 0(BX) JZ 3(PC) MOVL $0, AX RET MOVL $1, AX RET // bool runtime·cas64(uint64 *val, uint64 old, uint64 new) // Atomically: // if(*val == *old){ // *val = new; // return 1; // } else { // return 0; // } TEXT runtime·cas64(SB), 7, $0-20 MOVL 4(SP), BP MOVL 8(SP), AX MOVL 12(SP), DX MOVL 16(SP), BX MOVL 20(SP), CX LOCK CMPXCHG8B 0(BP) JNZ cas64_fail MOVL $1, AX RET cas64_fail: MOVL $0, AX RET // bool casp(void **p, void *old, void *new) // Atomically: // if(*p == old){ // *p = new; // return 1; // }else // return 0; TEXT runtime·casp(SB), 7, $0-12 MOVL 4(SP), BX MOVL 8(SP), AX MOVL 12(SP), CX LOCK CMPXCHGL CX, 0(BX) JZ 3(PC) MOVL $0, AX RET MOVL $1, AX RET // uint32 xadd(uint32 volatile *val, int32 delta) // Atomically: // *val += delta; // return *val; TEXT runtime·xadd(SB), 7, $0-8 MOVL 4(SP), BX MOVL 8(SP), AX MOVL AX, CX LOCK XADDL AX, 0(BX) ADDL CX, AX RET TEXT runtime·xchg(SB), 7, $0-8 MOVL 4(SP), BX MOVL 8(SP), AX XCHGL AX, 0(BX) RET TEXT runtime·procyield(SB),7,$0-0 MOVL 4(SP), AX again: PAUSE SUBL $1, AX JNZ again RET TEXT runtime·atomicstorep(SB), 7, $0-8 MOVL 4(SP), BX MOVL 8(SP), AX XCHGL AX, 0(BX) RET TEXT runtime·atomicstore(SB), 7, $0-8 MOVL 4(SP), BX MOVL 8(SP), AX XCHGL AX, 0(BX) RET // uint64 atomicload64(uint64 volatile* addr); // so actually // void atomicload64(uint64 *res, uint64 volatile *addr); TEXT runtime·atomicload64(SB), 7, $0-8 MOVL 4(SP), BX MOVL 8(SP), AX // MOVQ (%EAX), %MM0 BYTE $0x0f; BYTE $0x6f; BYTE $0x00 // MOVQ %MM0, 0(%EBX) BYTE $0x0f; BYTE $0x7f; BYTE $0x03 // EMMS BYTE $0x0F; BYTE $0x77 RET // void runtime·atomicstore64(uint64 volatile* addr, uint64 v); TEXT runtime·atomicstore64(SB), 7, $0-12 MOVL 4(SP), AX // MOVQ and EMMS were introduced on the Pentium MMX. // MOVQ 0x8(%ESP), %MM0 BYTE $0x0f; BYTE $0x6f; BYTE $0x44; BYTE $0x24; BYTE $0x08 // MOVQ %MM0, (%EAX) BYTE $0x0f; BYTE $0x7f; BYTE $0x00 // EMMS BYTE $0x0F; BYTE $0x77 // This is essentially a no-op, but it provides required memory fencing. // It can be replaced with MFENCE, but MFENCE was introduced only on the Pentium4 (SSE2). MOVL $0, AX LOCK XADDL AX, (SP) RET // void jmpdefer(fn, sp); // called from deferreturn. // 1. pop the caller // 2. sub 5 bytes from the callers return // 3. jmp to the argument TEXT runtime·jmpdefer(SB), 7, $0 MOVL 4(SP), DX // fn MOVL 8(SP), BX // caller sp LEAL -4(BX), SP // caller sp after CALL SUBL $5, (SP) // return to CALL again MOVL 0(DX), BX JMP BX // but first run the deferred function // Save state of caller into g->sched. TEXT gosave<>(SB),7,$0 PUSHL AX PUSHL BX get_tls(BX) MOVL g(BX), BX LEAL arg+0(FP), AX MOVL AX, (g_sched+gobuf_sp)(BX) MOVL -4(AX), AX MOVL AX, (g_sched+gobuf_pc)(BX) MOVL $0, (g_sched+gobuf_ret)(BX) MOVL $0, (g_sched+gobuf_ctxt)(BX) POPL BX POPL AX RET // asmcgocall(void(*fn)(void*), void *arg) // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.c for more details. TEXT runtime·asmcgocall(SB),7,$0-8 MOVL fn+0(FP), AX MOVL arg+4(FP), BX MOVL SP, DX // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. get_tls(CX) MOVL m(CX), BP MOVL m_g0(BP), SI MOVL g(CX), DI CMPL SI, DI JEQ 4(PC) CALL gosave<>(SB) MOVL SI, g(CX) MOVL (g_sched+gobuf_sp)(SI), SP // Now on a scheduling stack (a pthread-created stack). SUBL $32, SP ANDL $~15, SP // alignment, perhaps unnecessary MOVL DI, 8(SP) // save g MOVL DX, 4(SP) // save SP MOVL BX, 0(SP) // first argument in x86-32 ABI CALL AX // Restore registers, g, stack pointer. get_tls(CX) MOVL 8(SP), DI MOVL DI, g(CX) MOVL 4(SP), SP RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),7,$12-12 LEAL fn+0(FP), AX MOVL AX, 0(SP) MOVL frame+4(FP), AX MOVL AX, 4(SP) MOVL framesize+8(FP), AX MOVL AX, 8(SP) MOVL $runtime·cgocallback_gofunc(SB), AX CALL AX RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize) // See cgocall.c for more details. TEXT runtime·cgocallback_gofunc(SB),7,$8-12 // If m is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call through AX. get_tls(CX) #ifdef GOOS_windows MOVL $0, BP CMPL CX, $0 JNE 2(PC) #endif MOVL m(CX), BP MOVL BP, 4(SP) CMPL BP, $0 JNE havem needm: MOVL $runtime·needm(SB), AX CALL AX get_tls(CX) MOVL m(CX), BP havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 0(SP). MOVL m_g0(BP), SI MOVL (g_sched+gobuf_sp)(SI), AX MOVL AX, 0(SP) MOVL SP, (g_sched+gobuf_sp)(SI) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, 0(SP) and 4(SP) are unused except // on Windows, where they are the SEH block. MOVL m_curg(BP), SI MOVL SI, g(CX) MOVL (g_sched+gobuf_sp)(SI), DI // prepare stack as DI MOVL (g_sched+gobuf_pc)(SI), BP MOVL BP, -4(DI) LEAL -(4+8)(DI), SP CALL runtime·cgocallbackg(SB) // Restore g->sched (== m->curg->sched) from saved values. get_tls(CX) MOVL g(CX), SI MOVL 8(SP), BP MOVL BP, (g_sched+gobuf_pc)(SI) LEAL (8+4)(SP), DI MOVL DI, (g_sched+gobuf_sp)(SI) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVL m(CX), BP MOVL m_g0(BP), SI MOVL SI, g(CX) MOVL (g_sched+gobuf_sp)(SI), SP MOVL 0(SP), AX MOVL AX, (g_sched+gobuf_sp)(SI) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. MOVL 8(SP), BP CMPL BP, $0 JNE 3(PC) MOVL $runtime·dropm(SB), AX CALL AX // Done! RET // void setmg(M*, G*); set m and g. for use by needm. TEXT runtime·setmg(SB), 7, $0-8 #ifdef GOOS_windows MOVL mm+0(FP), AX CMPL AX, $0 JNE settls MOVL $0, 0x14(FS) RET settls: LEAL m_tls(AX), AX MOVL AX, 0x14(FS) #endif MOVL mm+0(FP), AX get_tls(CX) MOVL mm+0(FP), AX MOVL AX, m(CX) MOVL gg+4(FP), BX MOVL BX, g(CX) RET // void setmg_gcc(M*, G*); set m and g. for use by gcc TEXT setmg_gcc<>(SB), 7, $0 get_tls(AX) MOVL mm+0(FP), DX MOVL DX, m(AX) MOVL gg+4(FP), DX MOVL DX,g (AX) RET // check that SP is in range [g->stackbase, g->stackguard) TEXT runtime·stackcheck(SB), 7, $0-0 get_tls(CX) MOVL g(CX), AX CMPL g_stackbase(AX), SP JHI 2(PC) INT $3 CMPL SP, g_stackguard(AX) JHI 2(PC) INT $3 RET TEXT runtime·memclr(SB),7,$0-8 MOVL 4(SP), DI // arg 1 addr MOVL 8(SP), CX // arg 2 count MOVL CX, BX ANDL $3, BX SHRL $2, CX MOVL $0, AX CLD REP STOSL MOVL BX, CX REP STOSB RET TEXT runtime·getcallerpc(SB),7,$0-4 MOVL x+0(FP),AX // addr of first arg MOVL -4(AX),AX // get calling pc RET TEXT runtime·setcallerpc(SB),7,$0-8 MOVL x+0(FP),AX // addr of first arg MOVL x+4(FP), BX MOVL BX, -4(AX) // set calling pc RET TEXT runtime·getcallersp(SB), 7, $0-4 MOVL sp+0(FP), AX RET // int64 runtime·cputicks(void), so really // void runtime·cputicks(int64 *ticks) TEXT runtime·cputicks(SB),7,$0-4 RDTSC MOVL ret+0(FP), DI MOVL AX, 0(DI) MOVL DX, 4(DI) RET TEXT runtime·ldt0setup(SB),7,$16-0 // set up ldt 7 to point at tls0 // ldt 1 would be fine on Linux, but on OS X, 7 is as low as we can go. // the entry number is just a hint. setldt will set up GS with what it used. MOVL $7, 0(SP) LEAL runtime·tls0(SB), AX MOVL AX, 4(SP) MOVL $32, 8(SP) // sizeof(tls array) CALL runtime·setldt(SB) RET TEXT runtime·emptyfunc(SB),0,$0-0 RET TEXT runtime·abort(SB),7,$0-0 INT $0x3 TEXT runtime·stackguard(SB),7,$0-8 MOVL SP, DX MOVL DX, sp+0(FP) get_tls(CX) MOVL g(CX), BX MOVL g_stackguard(BX), DX MOVL DX, limit+4(FP) RET GLOBL runtime·tls0(SB), $32 // hash function using AES hardware instructions TEXT runtime·aeshash(SB),7,$0-12 MOVL 4(SP), DX // ptr to hash value MOVL 8(SP), CX // size MOVL 12(SP), AX // ptr to data JMP runtime·aeshashbody(SB) TEXT runtime·aeshashstr(SB),7,$0-12 MOVL 4(SP), DX // ptr to hash value MOVL 12(SP), AX // ptr to string struct MOVL 4(AX), CX // length of string MOVL (AX), AX // string data JMP runtime·aeshashbody(SB) // AX: data // CX: length // DX: ptr to seed input / hash output TEXT runtime·aeshashbody(SB),7,$0-12 MOVL (DX), X0 // seed to low 32 bits of xmm0 PINSRD $1, CX, X0 // size to next 32 bits of xmm0 MOVO runtime·aeskeysched+0(SB), X2 MOVO runtime·aeskeysched+16(SB), X3 CMPL CX, $16 JB aessmall aesloop: CMPL CX, $16 JBE aesloopend MOVOU (AX), X1 AESENC X2, X0 AESENC X1, X0 SUBL $16, CX ADDL $16, AX JMP aesloop // 1-16 bytes remaining aesloopend: // This load may overlap with the previous load above. // We'll hash some bytes twice, but that's ok. MOVOU -16(AX)(CX*1), X1 JMP partial // 0-15 bytes aessmall: TESTL CX, CX JE finalize // 0 bytes CMPB AX, $0xf0 JA highpartial // 16 bytes loaded at this address won't cross // a page boundary, so we can load it directly. MOVOU (AX), X1 ADDL CX, CX PAND masks<>(SB)(CX*8), X1 JMP partial highpartial: // address ends in 1111xxxx. Might be up against // a page boundary, so load ending at last byte. // Then shift bytes down using pshufb. MOVOU -16(AX)(CX*1), X1 ADDL CX, CX PSHUFB shifts<>(SB)(CX*8), X1 partial: // incorporate partial block into hash AESENC X3, X0 AESENC X1, X0 finalize: // finalize hash AESENC X2, X0 AESENC X3, X0 AESENC X2, X0 MOVL X0, (DX) RET TEXT runtime·aeshash32(SB),7,$0-12 MOVL 4(SP), DX // ptr to hash value MOVL 12(SP), AX // ptr to data MOVL (DX), X0 // seed PINSRD $1, (AX), X0 // data AESENC runtime·aeskeysched+0(SB), X0 AESENC runtime·aeskeysched+16(SB), X0 AESENC runtime·aeskeysched+0(SB), X0 MOVL X0, (DX) RET TEXT runtime·aeshash64(SB),7,$0-12 MOVL 4(SP), DX // ptr to hash value MOVL 12(SP), AX // ptr to data MOVQ (AX), X0 // data PINSRD $2, (DX), X0 // seed AESENC runtime·aeskeysched+0(SB), X0 AESENC runtime·aeskeysched+16(SB), X0 AESENC runtime·aeskeysched+0(SB), X0 MOVL X0, (DX) RET // simple mask to get rid of data in the high part of the register. DATA masks<>+0x00(SB)/4, $0x00000000 DATA masks<>+0x04(SB)/4, $0x00000000 DATA masks<>+0x08(SB)/4, $0x00000000 DATA masks<>+0x0c(SB)/4, $0x00000000 DATA masks<>+0x10(SB)/4, $0x000000ff DATA masks<>+0x14(SB)/4, $0x00000000 DATA masks<>+0x18(SB)/4, $0x00000000 DATA masks<>+0x1c(SB)/4, $0x00000000 DATA masks<>+0x20(SB)/4, $0x0000ffff DATA masks<>+0x24(SB)/4, $0x00000000 DATA masks<>+0x28(SB)/4, $0x00000000 DATA masks<>+0x2c(SB)/4, $0x00000000 DATA masks<>+0x30(SB)/4, $0x00ffffff DATA masks<>+0x34(SB)/4, $0x00000000 DATA masks<>+0x38(SB)/4, $0x00000000 DATA masks<>+0x3c(SB)/4, $0x00000000 DATA masks<>+0x40(SB)/4, $0xffffffff DATA masks<>+0x44(SB)/4, $0x00000000 DATA masks<>+0x48(SB)/4, $0x00000000 DATA masks<>+0x4c(SB)/4, $0x00000000 DATA masks<>+0x50(SB)/4, $0xffffffff DATA masks<>+0x54(SB)/4, $0x000000ff DATA masks<>+0x58(SB)/4, $0x00000000 DATA masks<>+0x5c(SB)/4, $0x00000000 DATA masks<>+0x60(SB)/4, $0xffffffff DATA masks<>+0x64(SB)/4, $0x0000ffff DATA masks<>+0x68(SB)/4, $0x00000000 DATA masks<>+0x6c(SB)/4, $0x00000000 DATA masks<>+0x70(SB)/4, $0xffffffff DATA masks<>+0x74(SB)/4, $0x00ffffff DATA masks<>+0x78(SB)/4, $0x00000000 DATA masks<>+0x7c(SB)/4, $0x00000000 DATA masks<>+0x80(SB)/4, $0xffffffff DATA masks<>+0x84(SB)/4, $0xffffffff DATA masks<>+0x88(SB)/4, $0x00000000 DATA masks<>+0x8c(SB)/4, $0x00000000 DATA masks<>+0x90(SB)/4, $0xffffffff DATA masks<>+0x94(SB)/4, $0xffffffff DATA masks<>+0x98(SB)/4, $0x000000ff DATA masks<>+0x9c(SB)/4, $0x00000000 DATA masks<>+0xa0(SB)/4, $0xffffffff DATA masks<>+0xa4(SB)/4, $0xffffffff DATA masks<>+0xa8(SB)/4, $0x0000ffff DATA masks<>+0xac(SB)/4, $0x00000000 DATA masks<>+0xb0(SB)/4, $0xffffffff DATA masks<>+0xb4(SB)/4, $0xffffffff DATA masks<>+0xb8(SB)/4, $0x00ffffff DATA masks<>+0xbc(SB)/4, $0x00000000 DATA masks<>+0xc0(SB)/4, $0xffffffff DATA masks<>+0xc4(SB)/4, $0xffffffff DATA masks<>+0xc8(SB)/4, $0xffffffff DATA masks<>+0xcc(SB)/4, $0x00000000 DATA masks<>+0xd0(SB)/4, $0xffffffff DATA masks<>+0xd4(SB)/4, $0xffffffff DATA masks<>+0xd8(SB)/4, $0xffffffff DATA masks<>+0xdc(SB)/4, $0x000000ff DATA masks<>+0xe0(SB)/4, $0xffffffff DATA masks<>+0xe4(SB)/4, $0xffffffff DATA masks<>+0xe8(SB)/4, $0xffffffff DATA masks<>+0xec(SB)/4, $0x0000ffff DATA masks<>+0xf0(SB)/4, $0xffffffff DATA masks<>+0xf4(SB)/4, $0xffffffff DATA masks<>+0xf8(SB)/4, $0xffffffff DATA masks<>+0xfc(SB)/4, $0x00ffffff GLOBL masks<>(SB),8,$256 // these are arguments to pshufb. They move data down from // the high bytes of the register to the low bytes of the register. // index is how many bytes to move. DATA shifts<>+0x00(SB)/4, $0x00000000 DATA shifts<>+0x04(SB)/4, $0x00000000 DATA shifts<>+0x08(SB)/4, $0x00000000 DATA shifts<>+0x0c(SB)/4, $0x00000000 DATA shifts<>+0x10(SB)/4, $0xffffff0f DATA shifts<>+0x14(SB)/4, $0xffffffff DATA shifts<>+0x18(SB)/4, $0xffffffff DATA shifts<>+0x1c(SB)/4, $0xffffffff DATA shifts<>+0x20(SB)/4, $0xffff0f0e DATA shifts<>+0x24(SB)/4, $0xffffffff DATA shifts<>+0x28(SB)/4, $0xffffffff DATA shifts<>+0x2c(SB)/4, $0xffffffff DATA shifts<>+0x30(SB)/4, $0xff0f0e0d DATA shifts<>+0x34(SB)/4, $0xffffffff DATA shifts<>+0x38(SB)/4, $0xffffffff DATA shifts<>+0x3c(SB)/4, $0xffffffff DATA shifts<>+0x40(SB)/4, $0x0f0e0d0c DATA shifts<>+0x44(SB)/4, $0xffffffff DATA shifts<>+0x48(SB)/4, $0xffffffff DATA shifts<>+0x4c(SB)/4, $0xffffffff DATA shifts<>+0x50(SB)/4, $0x0e0d0c0b DATA shifts<>+0x54(SB)/4, $0xffffff0f DATA shifts<>+0x58(SB)/4, $0xffffffff DATA shifts<>+0x5c(SB)/4, $0xffffffff DATA shifts<>+0x60(SB)/4, $0x0d0c0b0a DATA shifts<>+0x64(SB)/4, $0xffff0f0e DATA shifts<>+0x68(SB)/4, $0xffffffff DATA shifts<>+0x6c(SB)/4, $0xffffffff DATA shifts<>+0x70(SB)/4, $0x0c0b0a09 DATA shifts<>+0x74(SB)/4, $0xff0f0e0d DATA shifts<>+0x78(SB)/4, $0xffffffff DATA shifts<>+0x7c(SB)/4, $0xffffffff DATA shifts<>+0x80(SB)/4, $0x0b0a0908 DATA shifts<>+0x84(SB)/4, $0x0f0e0d0c DATA shifts<>+0x88(SB)/4, $0xffffffff DATA shifts<>+0x8c(SB)/4, $0xffffffff DATA shifts<>+0x90(SB)/4, $0x0a090807 DATA shifts<>+0x94(SB)/4, $0x0e0d0c0b DATA shifts<>+0x98(SB)/4, $0xffffff0f DATA shifts<>+0x9c(SB)/4, $0xffffffff DATA shifts<>+0xa0(SB)/4, $0x09080706 DATA shifts<>+0xa4(SB)/4, $0x0d0c0b0a DATA shifts<>+0xa8(SB)/4, $0xffff0f0e DATA shifts<>+0xac(SB)/4, $0xffffffff DATA shifts<>+0xb0(SB)/4, $0x08070605 DATA shifts<>+0xb4(SB)/4, $0x0c0b0a09 DATA shifts<>+0xb8(SB)/4, $0xff0f0e0d DATA shifts<>+0xbc(SB)/4, $0xffffffff DATA shifts<>+0xc0(SB)/4, $0x07060504 DATA shifts<>+0xc4(SB)/4, $0x0b0a0908 DATA shifts<>+0xc8(SB)/4, $0x0f0e0d0c DATA shifts<>+0xcc(SB)/4, $0xffffffff DATA shifts<>+0xd0(SB)/4, $0x06050403 DATA shifts<>+0xd4(SB)/4, $0x0a090807 DATA shifts<>+0xd8(SB)/4, $0x0e0d0c0b DATA shifts<>+0xdc(SB)/4, $0xffffff0f DATA shifts<>+0xe0(SB)/4, $0x05040302 DATA shifts<>+0xe4(SB)/4, $0x09080706 DATA shifts<>+0xe8(SB)/4, $0x0d0c0b0a DATA shifts<>+0xec(SB)/4, $0xffff0f0e DATA shifts<>+0xf0(SB)/4, $0x04030201 DATA shifts<>+0xf4(SB)/4, $0x08070605 DATA shifts<>+0xf8(SB)/4, $0x0c0b0a09 DATA shifts<>+0xfc(SB)/4, $0xff0f0e0d GLOBL shifts<>(SB),8,$256 TEXT runtime·memeq(SB),7,$0-12 MOVL a+0(FP), SI MOVL b+4(FP), DI MOVL count+8(FP), BX JMP runtime·memeqbody(SB) TEXT bytes·Equal(SB),7,$0-25 MOVL a_len+4(FP), BX MOVL b_len+16(FP), CX XORL AX, AX CMPL BX, CX JNE eqret MOVL a+0(FP), SI MOVL b+12(FP), DI CALL runtime·memeqbody(SB) eqret: MOVB AX, ret+24(FP) RET // a in SI // b in DI // count in BX TEXT runtime·memeqbody(SB),7,$0-0 XORL AX, AX CMPL BX, $4 JB small // 64 bytes at a time using xmm registers hugeloop: CMPL BX, $64 JB bigloop TESTL $0x4000000, runtime·cpuid_edx(SB) // check for sse2 JE bigloop MOVOU (SI), X0 MOVOU (DI), X1 MOVOU 16(SI), X2 MOVOU 16(DI), X3 MOVOU 32(SI), X4 MOVOU 32(DI), X5 MOVOU 48(SI), X6 MOVOU 48(DI), X7 PCMPEQB X1, X0 PCMPEQB X3, X2 PCMPEQB X5, X4 PCMPEQB X7, X6 PAND X2, X0 PAND X6, X4 PAND X4, X0 PMOVMSKB X0, DX ADDL $64, SI ADDL $64, DI SUBL $64, BX CMPL DX, $0xffff JEQ hugeloop RET // 4 bytes at a time using 32-bit register bigloop: CMPL BX, $4 JBE leftover MOVL (SI), CX MOVL (DI), DX ADDL $4, SI ADDL $4, DI SUBL $4, BX CMPL CX, DX JEQ bigloop RET // remaining 0-4 bytes leftover: MOVL -4(SI)(BX*1), CX MOVL -4(DI)(BX*1), DX CMPL CX, DX SETEQ AX RET small: CMPL BX, $0 JEQ equal LEAL 0(BX*8), CX NEGL CX MOVL SI, DX CMPB DX, $0xfc JA si_high // load at SI won't cross a page boundary. MOVL (SI), SI JMP si_finish si_high: // address ends in 111111xx. Load up to bytes we want, move to correct position. MOVL -4(SI)(BX*1), SI SHRL CX, SI si_finish: // same for DI. MOVL DI, DX CMPB DX, $0xfc JA di_high MOVL (DI), DI JMP di_finish di_high: MOVL -4(DI)(BX*1), DI SHRL CX, DI di_finish: SUBL SI, DI SHLL CX, DI equal: SETEQ AX RET TEXT runtime·cmpstring(SB),7,$0-20 MOVL s1+0(FP), SI MOVL s1+4(FP), BX MOVL s2+8(FP), DI MOVL s2+12(FP), DX CALL runtime·cmpbody(SB) MOVL AX, res+16(FP) RET TEXT bytes·Compare(SB),7,$0-28 MOVL s1+0(FP), SI MOVL s1+4(FP), BX MOVL s2+12(FP), DI MOVL s2+16(FP), DX CALL runtime·cmpbody(SB) MOVL AX, res+24(FP) RET // input: // SI = a // DI = b // BX = alen // DX = blen // output: // AX = 1/0/-1 TEXT runtime·cmpbody(SB),7,$0-0 CMPL SI, DI JEQ cmp_allsame CMPL BX, DX MOVL DX, BP CMOVLLT BX, BP // BP = min(alen, blen) CMPL BP, $4 JB cmp_small TESTL $0x4000000, runtime·cpuid_edx(SB) // check for sse2 JE cmp_mediumloop cmp_largeloop: CMPL BP, $16 JB cmp_mediumloop MOVOU (SI), X0 MOVOU (DI), X1 PCMPEQB X0, X1 PMOVMSKB X1, AX XORL $0xffff, AX // convert EQ to NE JNE cmp_diff16 // branch if at least one byte is not equal ADDL $16, SI ADDL $16, DI SUBL $16, BP JMP cmp_largeloop cmp_diff16: BSFL AX, BX // index of first byte that differs XORL AX, AX MOVB (SI)(BX*1), CX CMPB CX, (DI)(BX*1) SETHI AX LEAL -1(AX*2), AX // convert 1/0 to +1/-1 RET cmp_mediumloop: CMPL BP, $4 JBE cmp_0through4 MOVL (SI), AX MOVL (DI), CX CMPL AX, CX JNE cmp_diff4 ADDL $4, SI ADDL $4, DI SUBL $4, BP JMP cmp_mediumloop cmp_0through4: MOVL -4(SI)(BP*1), AX MOVL -4(DI)(BP*1), CX CMPL AX, CX JEQ cmp_allsame cmp_diff4: BSWAPL AX // reverse order of bytes BSWAPL CX XORL AX, CX // find bit differences BSRL CX, CX // index of highest bit difference SHRL CX, AX // move a's bit to bottom ANDL $1, AX // mask bit LEAL -1(AX*2), AX // 1/0 => +1/-1 RET // 0-3 bytes in common cmp_small: LEAL (BP*8), CX NEGL CX JEQ cmp_allsame // load si CMPB SI, $0xfc JA cmp_si_high MOVL (SI), SI JMP cmp_si_finish cmp_si_high: MOVL -4(SI)(BP*1), SI SHRL CX, SI cmp_si_finish: SHLL CX, SI // same for di CMPB DI, $0xfc JA cmp_di_high MOVL (DI), DI JMP cmp_di_finish cmp_di_high: MOVL -4(DI)(BP*1), DI SHRL CX, DI cmp_di_finish: SHLL CX, DI BSWAPL SI // reverse order of bytes BSWAPL DI XORL SI, DI // find bit differences JEQ cmp_allsame BSRL DI, CX // index of highest bit difference SHRL CX, SI // move a's bit to bottom ANDL $1, SI // mask bit LEAL -1(SI*2), AX // 1/0 => +1/-1 RET // all the bytes in common are the same, so we just need // to compare the lengths. cmp_allsame: XORL AX, AX XORL CX, CX CMPL BX, DX SETGT AX // 1 if alen > blen SETEQ CX // 1 if alen == blen LEAL -1(CX)(AX*2), AX // 1,0,-1 result RET