package ssa // Simple block optimizations to simplify the control flow graph. // TODO(adonovan): opt: instead of creating several "unreachable" blocks // per function in the Builder, reuse a single one (e.g. at Blocks[1]) // to reduce garbage. import ( "fmt" "os" ) // If true, perform sanity checking and show progress at each // successive iteration of optimizeBlocks. Very verbose. const debugBlockOpt = false // markReachable sets Index=-1 for all blocks reachable from b. func markReachable(b *BasicBlock) { b.Index = -1 for _, succ := range b.Succs { if succ.Index == 0 { markReachable(succ) } } } // deleteUnreachableBlocks marks all reachable blocks of f and // eliminates (nils) all others, including possibly cyclic subgraphs. // func deleteUnreachableBlocks(f *Function) { const white, black = 0, -1 // We borrow b.Index temporarily as the mark bit. for _, b := range f.Blocks { b.Index = white } markReachable(f.Blocks[0]) for i, b := range f.Blocks { if b.Index == white { for _, c := range b.Succs { if c.Index == black { c.removePred(b) // delete white->black edge } } if debugBlockOpt { fmt.Fprintln(os.Stderr, "unreachable", b) } f.Blocks[i] = nil // delete b } } f.removeNilBlocks() } // jumpThreading attempts to apply simple jump-threading to block b, // in which a->b->c become a->c if b is just a Jump. // The result is true if the optimization was applied. // func jumpThreading(f *Function, b *BasicBlock) bool { if b.Index == 0 { return false // don't apply to entry block } if b.Instrs == nil { fmt.Println("empty block ", b) return false } if _, ok := b.Instrs[0].(*Jump); !ok { return false // not just a jump } c := b.Succs[0] if c == b { return false // don't apply to degenerate jump-to-self. } if c.hasPhi() { return false // not sound without more effort } for j, a := range b.Preds { a.replaceSucc(b, c) // If a now has two edges to c, replace its degenerate If by Jump. if len(a.Succs) == 2 && a.Succs[0] == c && a.Succs[1] == c { jump := new(Jump) jump.SetBlock(a) a.Instrs[len(a.Instrs)-1] = jump a.Succs = a.Succs[:1] c.removePred(b) } else { if j == 0 { c.replacePred(b, a) } else { c.Preds = append(c.Preds, a) } } if debugBlockOpt { fmt.Fprintln(os.Stderr, "jumpThreading", a, b, c) } } f.Blocks[b.Index] = nil // delete b return true } // fuseBlocks attempts to apply the block fusion optimization to block // a, in which a->b becomes ab if len(a.Succs)==len(b.Preds)==1. // The result is true if the optimization was applied. // func fuseBlocks(f *Function, a *BasicBlock) bool { if len(a.Succs) != 1 { return false } b := a.Succs[0] if len(b.Preds) != 1 { return false } // Eliminate jump at end of A, then copy all of B across. a.Instrs = append(a.Instrs[:len(a.Instrs)-1], b.Instrs...) for _, instr := range b.Instrs { instr.SetBlock(a) } // A inherits B's successors a.Succs = append(a.succs2[:0], b.Succs...) // Fix up Preds links of all successors of B. for _, c := range b.Succs { c.replacePred(b, a) } if debugBlockOpt { fmt.Fprintln(os.Stderr, "fuseBlocks", a, b) } f.Blocks[b.Index] = nil // delete b return true } // optimizeBlocks() performs some simple block optimizations on a // completed function: dead block elimination, block fusion, jump // threading. // func optimizeBlocks(f *Function) { deleteUnreachableBlocks(f) // Loop until no further progress. changed := true for changed { changed = false if debugBlockOpt { f.DumpTo(os.Stderr) mustSanityCheck(f, nil) } for _, b := range f.Blocks { // f.Blocks will temporarily contain nils to indicate // deleted blocks; we remove them at the end. if b == nil { continue } // Fuse blocks. b->c becomes bc. if fuseBlocks(f, b) { changed = true } // a->b->c becomes a->c if b contains only a Jump. if jumpThreading(f, b) { changed = true continue // (b was disconnected) } } } f.removeNilBlocks() }