// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "zasm_GOOS_GOARCH.h" TEXT _rt0_amd64(SB),7,$-8 // copy arguments forward on an even stack MOVQ DI, AX // argc MOVQ SI, BX // argv SUBQ $(4*8+7), SP // 2args 2auto ANDQ $~15, SP MOVQ AX, 16(SP) MOVQ BX, 24(SP) // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVQ $runtime·g0(SB), DI LEAQ (-64*1024+104)(SP), BX MOVQ BX, g_stackguard(DI) MOVQ BX, g_stackguard0(DI) MOVQ SP, g_stackbase(DI) // find out information about the processor we're on MOVQ $0, AX CPUID CMPQ AX, $0 JE nocpuinfo MOVQ $1, AX CPUID MOVL CX, runtime·cpuid_ecx(SB) MOVL DX, runtime·cpuid_edx(SB) nocpuinfo: // if there is an _cgo_init, call it. MOVQ _cgo_init(SB), AX TESTQ AX, AX JZ needtls // g0 already in DI MOVQ DI, CX // Win64 uses CX for first parameter MOVQ $setmg_gcc<>(SB), SI CALL AX // update stackguard after _cgo_init MOVQ $runtime·g0(SB), CX MOVQ g_stackguard0(CX), AX MOVQ AX, g_stackguard(CX) CMPL runtime·iswindows(SB), $0 JEQ ok needtls: // skip TLS setup on Plan 9 CMPL runtime·isplan9(SB), $1 JEQ ok LEAQ runtime·tls0(SB), DI CALL runtime·settls(SB) // store through it, to make sure it works get_tls(BX) MOVQ $0x123, g(BX) MOVQ runtime·tls0(SB), AX CMPQ AX, $0x123 JEQ 2(PC) MOVL AX, 0 // abort ok: // set the per-goroutine and per-mach "registers" get_tls(BX) LEAQ runtime·g0(SB), CX MOVQ CX, g(BX) LEAQ runtime·m0(SB), AX MOVQ AX, m(BX) // save m->g0 = g0 MOVQ CX, m_g0(AX) CLD // convention is D is always left cleared CALL runtime·check(SB) MOVL 16(SP), AX // copy argc MOVL AX, 0(SP) MOVQ 24(SP), AX // copy argv MOVQ AX, 8(SP) CALL runtime·args(SB) CALL runtime·osinit(SB) CALL runtime·hashinit(SB) CALL runtime·schedinit(SB) // create a new goroutine to start program PUSHQ $runtime·main·f(SB) // entry PUSHQ $0 // arg size CALL runtime·newproc(SB) POPQ AX POPQ AX // start this M CALL runtime·mstart(SB) MOVL $0xf1, 0xf1 // crash RET DATA runtime·main·f+0(SB)/8,$runtime·main(SB) GLOBL runtime·main·f(SB),8,$8 TEXT runtime·breakpoint(SB),7,$0 BYTE $0xcc RET TEXT runtime·asminit(SB),7,$0 // No per-thread init. RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), 7, $0 MOVQ 8(SP), AX // gobuf LEAQ 8(SP), BX // caller's SP MOVQ BX, gobuf_sp(AX) MOVQ 0(SP), BX // caller's PC MOVQ BX, gobuf_pc(AX) get_tls(CX) MOVQ g(CX), BX MOVQ BX, gobuf_g(AX) RET // void gogo(Gobuf*, uintptr) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), 7, $0 MOVQ 16(SP), AX // return 2nd arg MOVQ 8(SP), BX // gobuf MOVQ gobuf_g(BX), DX MOVQ 0(DX), CX // make sure g != nil get_tls(CX) MOVQ DX, g(CX) MOVQ gobuf_sp(BX), SP // restore SP MOVQ gobuf_pc(BX), BX JMP BX // void gogocall(Gobuf*, void (*fn)(void), uintptr r0) // restore state from Gobuf but then call fn. // (call fn, returning to state in Gobuf) TEXT runtime·gogocall(SB), 7, $0 MOVQ 24(SP), DX // context MOVQ 16(SP), AX // fn MOVQ 8(SP), BX // gobuf MOVQ gobuf_g(BX), DI get_tls(CX) MOVQ DI, g(CX) MOVQ 0(DI), CX // make sure g != nil MOVQ gobuf_sp(BX), SP // restore SP MOVQ gobuf_pc(BX), BX PUSHQ BX JMP AX POPQ BX // not reached // void gogocallfn(Gobuf*, FuncVal*) // restore state from Gobuf but then call fn. // (call fn, returning to state in Gobuf) TEXT runtime·gogocallfn(SB), 7, $0 MOVQ 16(SP), DX // fn MOVQ 8(SP), BX // gobuf MOVQ gobuf_g(BX), AX get_tls(CX) MOVQ AX, g(CX) MOVQ 0(AX), CX // make sure g != nil MOVQ gobuf_sp(BX), SP // restore SP MOVQ gobuf_pc(BX), BX PUSHQ BX MOVQ 0(DX), BX JMP BX POPQ BX // not reached // void mcall(void (*fn)(G*)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), 7, $0 MOVQ fn+0(FP), DI get_tls(CX) MOVQ g(CX), AX // save state in g->gobuf MOVQ 0(SP), BX // caller's PC MOVQ BX, (g_sched+gobuf_pc)(AX) LEAQ 8(SP), BX // caller's SP MOVQ BX, (g_sched+gobuf_sp)(AX) MOVQ AX, (g_sched+gobuf_g)(AX) // switch to m->g0 & its stack, call fn MOVQ m(CX), BX MOVQ m_g0(BX), SI CMPQ SI, AX // if g == m->g0 call badmcall JNE 2(PC) CALL runtime·badmcall(SB) MOVQ SI, g(CX) // g = m->g0 MOVQ (g_sched+gobuf_sp)(SI), SP // sp = m->g0->gobuf.sp PUSHQ AX CALL DI POPQ AX CALL runtime·badmcall2(SB) RET /* * support for morestack */ // Called during function prolog when more stack is needed. // Caller has already done get_tls(CX); MOVQ m(CX), BX. TEXT runtime·morestack(SB),7,$0 // Cannot grow scheduler stack (m->g0). MOVQ m_g0(BX), SI CMPQ g(CX), SI JNE 2(PC) INT $3 MOVQ DX, m_cret(BX) // Called from f. // Set m->morebuf to f's caller. MOVQ 8(SP), AX // f's caller's PC MOVQ AX, (m_morebuf+gobuf_pc)(BX) LEAQ 16(SP), AX // f's caller's SP MOVQ AX, (m_morebuf+gobuf_sp)(BX) MOVQ AX, m_moreargp(BX) get_tls(CX) MOVQ g(CX), SI MOVQ SI, (m_morebuf+gobuf_g)(BX) // Set m->morepc to f's PC. MOVQ 0(SP), AX MOVQ AX, m_morepc(BX) // Call newstack on m->g0's stack. MOVQ m_g0(BX), BP MOVQ BP, g(CX) MOVQ (g_sched+gobuf_sp)(BP), SP CALL runtime·newstack(SB) MOVQ $0, 0x1003 // crash if newstack returns RET // Called from reflection library. Mimics morestack, // reuses stack growth code to create a frame // with the desired args running the desired function. // // func call(fn *byte, arg *byte, argsize uint32). TEXT reflect·call(SB), 7, $0 get_tls(CX) MOVQ m(CX), BX // Save our caller's state as the PC and SP to // restore when returning from f. MOVQ 0(SP), AX // our caller's PC MOVQ AX, (m_morebuf+gobuf_pc)(BX) LEAQ 8(SP), AX // our caller's SP MOVQ AX, (m_morebuf+gobuf_sp)(BX) MOVQ g(CX), AX MOVQ AX, (m_morebuf+gobuf_g)(BX) // Set up morestack arguments to call f on a new stack. // We set f's frame size to 1, as a hint to newstack // that this is a call from reflect·call. // If it turns out that f needs a larger frame than // the default stack, f's usual stack growth prolog will // allocate a new segment (and recopy the arguments). MOVQ 8(SP), AX // fn MOVQ 16(SP), DX // arg frame MOVL 24(SP), CX // arg size MOVQ AX, m_morepc(BX) // f's PC MOVQ DX, m_moreargp(BX) // argument frame pointer MOVL CX, m_moreargsize(BX) // f's argument size MOVL $1, m_moreframesize(BX) // f's frame size // Call newstack on m->g0's stack. MOVQ m_g0(BX), BP get_tls(CX) MOVQ BP, g(CX) MOVQ (g_sched+gobuf_sp)(BP), SP CALL runtime·newstack(SB) MOVQ $0, 0x1103 // crash if newstack returns RET // Return point when leaving stack. TEXT runtime·lessstack(SB), 7, $0 // Save return value in m->cret get_tls(CX) MOVQ m(CX), BX MOVQ AX, m_cret(BX) // Call oldstack on m->g0's stack. MOVQ m_g0(BX), BP MOVQ BP, g(CX) MOVQ (g_sched+gobuf_sp)(BP), SP CALL runtime·oldstack(SB) MOVQ $0, 0x1004 // crash if oldstack returns RET // morestack trampolines TEXT runtime·morestack00(SB),7,$0 get_tls(CX) MOVQ m(CX), BX MOVQ $0, AX MOVQ AX, m_moreframesize(BX) MOVQ $runtime·morestack(SB), AX JMP AX TEXT runtime·morestack01(SB),7,$0 get_tls(CX) MOVQ m(CX), BX SHLQ $32, AX MOVQ AX, m_moreframesize(BX) MOVQ $runtime·morestack(SB), AX JMP AX TEXT runtime·morestack10(SB),7,$0 get_tls(CX) MOVQ m(CX), BX MOVLQZX AX, AX MOVQ AX, m_moreframesize(BX) MOVQ $runtime·morestack(SB), AX JMP AX TEXT runtime·morestack11(SB),7,$0 get_tls(CX) MOVQ m(CX), BX MOVQ AX, m_moreframesize(BX) MOVQ $runtime·morestack(SB), AX JMP AX // subcases of morestack01 // with const of 8,16,...48 TEXT runtime·morestack8(SB),7,$0 PUSHQ $1 MOVQ $morestack<>(SB), AX JMP AX TEXT runtime·morestack16(SB),7,$0 PUSHQ $2 MOVQ $morestack<>(SB), AX JMP AX TEXT runtime·morestack24(SB),7,$0 PUSHQ $3 MOVQ $morestack<>(SB), AX JMP AX TEXT runtime·morestack32(SB),7,$0 PUSHQ $4 MOVQ $morestack<>(SB), AX JMP AX TEXT runtime·morestack40(SB),7,$0 PUSHQ $5 MOVQ $morestack<>(SB), AX JMP AX TEXT runtime·morestack48(SB),7,$0 PUSHQ $6 MOVQ $morestack<>(SB), AX JMP AX TEXT morestack<>(SB),7,$0 get_tls(CX) MOVQ m(CX), BX POPQ AX SHLQ $35, AX MOVQ AX, m_moreframesize(BX) MOVQ $runtime·morestack(SB), AX JMP AX // bool cas(int32 *val, int32 old, int32 new) // Atomically: // if(*val == old){ // *val = new; // return 1; // } else // return 0; TEXT runtime·cas(SB), 7, $0 MOVQ 8(SP), BX MOVL 16(SP), AX MOVL 20(SP), CX LOCK CMPXCHGL CX, 0(BX) JZ 3(PC) MOVL $0, AX RET MOVL $1, AX RET // bool runtime·cas64(uint64 *val, uint64 *old, uint64 new) // Atomically: // if(*val == *old){ // *val = new; // return 1; // } else { // *old = *val // return 0; // } TEXT runtime·cas64(SB), 7, $0 MOVQ 8(SP), BX MOVQ 16(SP), BP MOVQ 0(BP), AX MOVQ 24(SP), CX LOCK CMPXCHGQ CX, 0(BX) JNZ cas64_fail MOVL $1, AX RET cas64_fail: MOVQ AX, 0(BP) MOVL $0, AX RET // bool casp(void **val, void *old, void *new) // Atomically: // if(*val == old){ // *val = new; // return 1; // } else // return 0; TEXT runtime·casp(SB), 7, $0 MOVQ 8(SP), BX MOVQ 16(SP), AX MOVQ 24(SP), CX LOCK CMPXCHGQ CX, 0(BX) JZ 3(PC) MOVL $0, AX RET MOVL $1, AX RET // uint32 xadd(uint32 volatile *val, int32 delta) // Atomically: // *val += delta; // return *val; TEXT runtime·xadd(SB), 7, $0 MOVQ 8(SP), BX MOVL 16(SP), AX MOVL AX, CX LOCK XADDL AX, 0(BX) ADDL CX, AX RET TEXT runtime·xadd64(SB), 7, $0 MOVQ 8(SP), BX MOVQ 16(SP), AX MOVQ AX, CX LOCK XADDQ AX, 0(BX) ADDQ CX, AX RET TEXT runtime·xchg(SB), 7, $0 MOVQ 8(SP), BX MOVL 16(SP), AX XCHGL AX, 0(BX) RET TEXT runtime·xchg64(SB), 7, $0 MOVQ 8(SP), BX MOVQ 16(SP), AX XCHGQ AX, 0(BX) RET TEXT runtime·procyield(SB),7,$0 MOVL 8(SP), AX again: PAUSE SUBL $1, AX JNZ again RET TEXT runtime·atomicstorep(SB), 7, $0 MOVQ 8(SP), BX MOVQ 16(SP), AX XCHGQ AX, 0(BX) RET TEXT runtime·atomicstore(SB), 7, $0 MOVQ 8(SP), BX MOVL 16(SP), AX XCHGL AX, 0(BX) RET TEXT runtime·atomicstore64(SB), 7, $0 MOVQ 8(SP), BX MOVQ 16(SP), AX XCHGQ AX, 0(BX) RET // void jmpdefer(fn, sp); // called from deferreturn. // 1. pop the caller // 2. sub 5 bytes from the callers return // 3. jmp to the argument TEXT runtime·jmpdefer(SB), 7, $0 MOVQ 8(SP), DX // fn MOVQ 16(SP), BX // caller sp LEAQ -8(BX), SP // caller sp after CALL SUBQ $5, (SP) // return to CALL again MOVQ 0(DX), BX JMP BX // but first run the deferred function // Dummy function to use in saved gobuf.PC, // to match SP pointing at a return address. // The gobuf.PC is unused by the contortions here // but setting it to return will make the traceback code work. TEXT return<>(SB),7,$0 RET // asmcgocall(void(*fn)(void*), void *arg) // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.c for more details. TEXT runtime·asmcgocall(SB),7,$0 MOVQ fn+0(FP), AX MOVQ arg+8(FP), BX MOVQ SP, DX // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. get_tls(CX) MOVQ m(CX), BP MOVQ m_g0(BP), SI MOVQ g(CX), DI CMPQ SI, DI JEQ 6(PC) MOVQ SP, (g_sched+gobuf_sp)(DI) MOVQ $return<>(SB), (g_sched+gobuf_pc)(DI) MOVQ DI, (g_sched+gobuf_g)(DI) MOVQ SI, g(CX) MOVQ (g_sched+gobuf_sp)(SI), SP // Now on a scheduling stack (a pthread-created stack). // Make sure we have enough room for 4 stack-backed fast-call // registers as per windows amd64 calling convention. SUBQ $64, SP ANDQ $~15, SP // alignment for gcc ABI MOVQ DI, 48(SP) // save g MOVQ DX, 40(SP) // save SP MOVQ BX, DI // DI = first argument in AMD64 ABI MOVQ BX, CX // CX = first argument in Win64 CALL AX // Restore registers, g, stack pointer. get_tls(CX) MOVQ 48(SP), DI MOVQ DI, g(CX) MOVQ 40(SP), SP RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),7,$24 LEAQ fn+0(FP), AX MOVQ AX, 0(SP) MOVQ frame+8(FP), AX MOVQ AX, 8(SP) MOVQ framesize+16(FP), AX MOVQ AX, 16(SP) MOVQ $runtime·cgocallback_gofunc(SB), AX CALL AX RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize) // See cgocall.c for more details. TEXT runtime·cgocallback_gofunc(SB),7,$24 // If m is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call through AX. get_tls(CX) #ifdef GOOS_windows CMPQ CX, $0 JNE 3(PC) PUSHQ $0 JMP needm #endif MOVQ m(CX), BP PUSHQ BP CMPQ BP, $0 JNE havem needm: MOVQ $runtime·needm(SB), AX CALL AX get_tls(CX) MOVQ m(CX), BP havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. MOVQ m_g0(BP), SI PUSHQ (g_sched+gobuf_sp)(SI) MOVQ SP, (g_sched+gobuf_sp)(SI) // Switch to m->curg stack and call runtime.cgocallbackg // with the three arguments. Because we are taking over // the execution of m->curg but *not* resuming what had // been running, we need to save that information (m->curg->gobuf) // so that we can restore it when we're done. // We can restore m->curg->gobuf.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->gobuf.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because we defined cgocallbackg to have // a frame size of 24, the same amount that we use below), // so that the traceback will seamlessly trace back into // the earlier calls. MOVQ fn+0(FP), AX MOVQ frame+8(FP), BX MOVQ framesize+16(FP), DX MOVQ m_curg(BP), SI MOVQ SI, g(CX) MOVQ (g_sched+gobuf_sp)(SI), DI // prepare stack as DI // Push gobuf.pc MOVQ (g_sched+gobuf_pc)(SI), BP SUBQ $8, DI MOVQ BP, 0(DI) // Push arguments to cgocallbackg. // Frame size here must match the frame size above // to trick traceback routines into doing the right thing. SUBQ $24, DI MOVQ AX, 0(DI) MOVQ BX, 8(DI) MOVQ DX, 16(DI) // Switch stack and make the call. MOVQ DI, SP CALL runtime·cgocallbackg(SB) // Restore g->gobuf (== m->curg->gobuf) from saved values. get_tls(CX) MOVQ g(CX), SI MOVQ 24(SP), BP MOVQ BP, (g_sched+gobuf_pc)(SI) LEAQ (24+8)(SP), DI MOVQ DI, (g_sched+gobuf_sp)(SI) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVQ m(CX), BP MOVQ m_g0(BP), SI MOVQ SI, g(CX) MOVQ (g_sched+gobuf_sp)(SI), SP POPQ (g_sched+gobuf_sp)(SI) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. POPQ BP CMPQ BP, $0 JNE 3(PC) MOVQ $runtime·dropm(SB), AX CALL AX // Done! RET // void setmg(M*, G*); set m and g. for use by needm. TEXT runtime·setmg(SB), 7, $0 MOVQ mm+0(FP), AX #ifdef GOOS_windows CMPQ AX, $0 JNE settls MOVQ $0, 0x28(GS) RET settls: LEAQ m_tls(AX), AX MOVQ AX, 0x28(GS) #endif get_tls(CX) MOVQ mm+0(FP), AX MOVQ AX, m(CX) MOVQ gg+8(FP), BX MOVQ BX, g(CX) RET // void setmg_gcc(M*, G*); set m and g called from gcc. TEXT setmg_gcc<>(SB),7,$0 get_tls(AX) MOVQ DI, m(AX) MOVQ SI, g(AX) RET // check that SP is in range [g->stackbase, g->stackguard) TEXT runtime·stackcheck(SB), 7, $0 get_tls(CX) MOVQ g(CX), AX CMPQ g_stackbase(AX), SP JHI 2(PC) INT $3 CMPQ SP, g_stackguard(AX) JHI 2(PC) INT $3 RET TEXT runtime·memclr(SB),7,$0 MOVQ 8(SP), DI // arg 1 addr MOVQ 16(SP), CX // arg 2 count MOVQ CX, BX ANDQ $7, BX SHRQ $3, CX MOVQ $0, AX CLD REP STOSQ MOVQ BX, CX REP STOSB RET TEXT runtime·getcallerpc(SB),7,$0 MOVQ x+0(FP),AX // addr of first arg MOVQ -8(AX),AX // get calling pc RET TEXT runtime·setcallerpc(SB),7,$0 MOVQ x+0(FP),AX // addr of first arg MOVQ x+8(FP), BX MOVQ BX, -8(AX) // set calling pc RET TEXT runtime·getcallersp(SB),7,$0 MOVQ sp+0(FP), AX RET // int64 runtime·cputicks(void) TEXT runtime·cputicks(SB),7,$0 RDTSC SHLQ $32, DX ADDQ DX, AX RET TEXT runtime·stackguard(SB),7,$0 MOVQ SP, DX MOVQ DX, sp+0(FP) get_tls(CX) MOVQ g(CX), BX MOVQ g_stackguard(BX), DX MOVQ DX, limit+8(FP) RET GLOBL runtime·tls0(SB), $64 // hash function using AES hardware instructions TEXT runtime·aeshash(SB),7,$0 MOVQ 8(SP), DX // ptr to hash value MOVQ 16(SP), CX // size MOVQ 24(SP), AX // ptr to data JMP runtime·aeshashbody(SB) TEXT runtime·aeshashstr(SB),7,$0 MOVQ 8(SP), DX // ptr to hash value MOVQ 24(SP), AX // ptr to string struct MOVQ 8(AX), CX // length of string MOVQ (AX), AX // string data JMP runtime·aeshashbody(SB) // AX: data // CX: length // DX: ptr to seed input / hash output TEXT runtime·aeshashbody(SB),7,$0 MOVQ (DX), X0 // seed to low 64 bits of xmm0 PINSRQ $1, CX, X0 // size to high 64 bits of xmm0 MOVO runtime·aeskeysched+0(SB), X2 MOVO runtime·aeskeysched+16(SB), X3 CMPQ CX, $16 JB aessmall aesloop: CMPQ CX, $16 JBE aesloopend MOVOU (AX), X1 AESENC X2, X0 AESENC X1, X0 SUBQ $16, CX ADDQ $16, AX JMP aesloop // 1-16 bytes remaining aesloopend: // This load may overlap with the previous load above. // We'll hash some bytes twice, but that's ok. MOVOU -16(AX)(CX*1), X1 JMP partial // 0-15 bytes aessmall: TESTQ CX, CX JE finalize // 0 bytes CMPB AX, $0xf0 JA highpartial // 16 bytes loaded at this address won't cross // a page boundary, so we can load it directly. MOVOU (AX), X1 ADDQ CX, CX PAND masks(SB)(CX*8), X1 JMP partial highpartial: // address ends in 1111xxxx. Might be up against // a page boundary, so load ending at last byte. // Then shift bytes down using pshufb. MOVOU -16(AX)(CX*1), X1 ADDQ CX, CX PSHUFB shifts(SB)(CX*8), X1 partial: // incorporate partial block into hash AESENC X3, X0 AESENC X1, X0 finalize: // finalize hash AESENC X2, X0 AESENC X3, X0 AESENC X2, X0 MOVQ X0, (DX) RET TEXT runtime·aeshash32(SB),7,$0 MOVQ 8(SP), DX // ptr to hash value MOVQ 24(SP), AX // ptr to data MOVQ (DX), X0 // seed PINSRD $2, (AX), X0 // data AESENC runtime·aeskeysched+0(SB), X0 AESENC runtime·aeskeysched+16(SB), X0 AESENC runtime·aeskeysched+0(SB), X0 MOVQ X0, (DX) RET TEXT runtime·aeshash64(SB),7,$0 MOVQ 8(SP), DX // ptr to hash value MOVQ 24(SP), AX // ptr to data MOVQ (DX), X0 // seed PINSRQ $1, (AX), X0 // data AESENC runtime·aeskeysched+0(SB), X0 AESENC runtime·aeskeysched+16(SB), X0 AESENC runtime·aeskeysched+0(SB), X0 MOVQ X0, (DX) RET // simple mask to get rid of data in the high part of the register. TEXT masks(SB),7,$0 QUAD $0x0000000000000000 QUAD $0x0000000000000000 QUAD $0x00000000000000ff QUAD $0x0000000000000000 QUAD $0x000000000000ffff QUAD $0x0000000000000000 QUAD $0x0000000000ffffff QUAD $0x0000000000000000 QUAD $0x00000000ffffffff QUAD $0x0000000000000000 QUAD $0x000000ffffffffff QUAD $0x0000000000000000 QUAD $0x0000ffffffffffff QUAD $0x0000000000000000 QUAD $0x00ffffffffffffff QUAD $0x0000000000000000 QUAD $0xffffffffffffffff QUAD $0x0000000000000000 QUAD $0xffffffffffffffff QUAD $0x00000000000000ff QUAD $0xffffffffffffffff QUAD $0x000000000000ffff QUAD $0xffffffffffffffff QUAD $0x0000000000ffffff QUAD $0xffffffffffffffff QUAD $0x00000000ffffffff QUAD $0xffffffffffffffff QUAD $0x000000ffffffffff QUAD $0xffffffffffffffff QUAD $0x0000ffffffffffff QUAD $0xffffffffffffffff QUAD $0x00ffffffffffffff // these are arguments to pshufb. They move data down from // the high bytes of the register to the low bytes of the register. // index is how many bytes to move. TEXT shifts(SB),7,$0 QUAD $0x0000000000000000 QUAD $0x0000000000000000 QUAD $0xffffffffffffff0f QUAD $0xffffffffffffffff QUAD $0xffffffffffff0f0e QUAD $0xffffffffffffffff QUAD $0xffffffffff0f0e0d QUAD $0xffffffffffffffff QUAD $0xffffffff0f0e0d0c QUAD $0xffffffffffffffff QUAD $0xffffff0f0e0d0c0b QUAD $0xffffffffffffffff QUAD $0xffff0f0e0d0c0b0a QUAD $0xffffffffffffffff QUAD $0xff0f0e0d0c0b0a09 QUAD $0xffffffffffffffff QUAD $0x0f0e0d0c0b0a0908 QUAD $0xffffffffffffffff QUAD $0x0e0d0c0b0a090807 QUAD $0xffffffffffffff0f QUAD $0x0d0c0b0a09080706 QUAD $0xffffffffffff0f0e QUAD $0x0c0b0a0908070605 QUAD $0xffffffffff0f0e0d QUAD $0x0b0a090807060504 QUAD $0xffffffff0f0e0d0c QUAD $0x0a09080706050403 QUAD $0xffffff0f0e0d0c0b QUAD $0x0908070605040302 QUAD $0xffff0f0e0d0c0b0a QUAD $0x0807060504030201 QUAD $0xff0f0e0d0c0b0a09 TEXT runtime·memeq(SB),7,$0 MOVQ a+0(FP), SI MOVQ b+8(FP), DI MOVQ count+16(FP), BX JMP runtime·memeqbody(SB) TEXT bytes·Equal(SB),7,$0 MOVQ a_len+8(FP), BX MOVQ b_len+32(FP), CX XORQ AX, AX CMPQ BX, CX JNE eqret MOVQ a+0(FP), SI MOVQ b+24(FP), DI CALL runtime·memeqbody(SB) eqret: MOVB AX, ret+48(FP) RET // a in SI // b in DI // count in BX TEXT runtime·memeqbody(SB),7,$0 XORQ AX, AX CMPQ BX, $8 JB small // 64 bytes at a time using xmm registers hugeloop: CMPQ BX, $64 JB bigloop MOVOU (SI), X0 MOVOU (DI), X1 MOVOU 16(SI), X2 MOVOU 16(DI), X3 MOVOU 32(SI), X4 MOVOU 32(DI), X5 MOVOU 48(SI), X6 MOVOU 48(DI), X7 PCMPEQB X1, X0 PCMPEQB X3, X2 PCMPEQB X5, X4 PCMPEQB X7, X6 PAND X2, X0 PAND X6, X4 PAND X4, X0 PMOVMSKB X0, DX ADDQ $64, SI ADDQ $64, DI SUBQ $64, BX CMPL DX, $0xffff JEQ hugeloop RET // 8 bytes at a time using 64-bit register bigloop: CMPQ BX, $8 JBE leftover MOVQ (SI), CX MOVQ (DI), DX ADDQ $8, SI ADDQ $8, DI SUBQ $8, BX CMPQ CX, DX JEQ bigloop RET // remaining 0-8 bytes leftover: MOVQ -8(SI)(BX*1), CX MOVQ -8(DI)(BX*1), DX CMPQ CX, DX SETEQ AX RET small: CMPQ BX, $0 JEQ equal LEAQ 0(BX*8), CX NEGQ CX CMPB SI, $0xf8 JA si_high // load at SI won't cross a page boundary. MOVQ (SI), SI JMP si_finish si_high: // address ends in 11111xxx. Load up to bytes we want, move to correct position. MOVQ -8(SI)(BX*1), SI SHRQ CX, SI si_finish: // same for DI. CMPB DI, $0xf8 JA di_high MOVQ (DI), DI JMP di_finish di_high: MOVQ -8(DI)(BX*1), DI SHRQ CX, DI di_finish: SUBQ SI, DI SHLQ CX, DI equal: SETEQ AX RET TEXT runtime·cmpstring(SB),7,$0 MOVQ s1+0(FP), SI MOVQ s1+8(FP), BX MOVQ s2+16(FP), DI MOVQ s2+24(FP), DX CALL runtime·cmpbody(SB) MOVQ AX, res+32(FP) RET TEXT bytes·Compare(SB),7,$0 MOVQ s1+0(FP), SI MOVQ s1+8(FP), BX MOVQ s2+24(FP), DI MOVQ s2+32(FP), DX CALL runtime·cmpbody(SB) MOVQ AX, res+48(FP) RET // input: // SI = a // DI = b // BX = alen // DX = blen // output: // AX = 1/0/-1 TEXT runtime·cmpbody(SB),7,$0 CMPQ SI, DI JEQ cmp_allsame CMPQ BX, DX MOVQ DX, BP CMOVQLT BX, BP // BP = min(alen, blen) = # of bytes to compare CMPQ BP, $8 JB cmp_small cmp_loop: CMPQ BP, $16 JBE cmp_0through16 MOVOU (SI), X0 MOVOU (DI), X1 PCMPEQB X0, X1 PMOVMSKB X1, AX XORQ $0xffff, AX // convert EQ to NE JNE cmp_diff16 // branch if at least one byte is not equal ADDQ $16, SI ADDQ $16, DI SUBQ $16, BP JMP cmp_loop // AX = bit mask of differences cmp_diff16: BSFQ AX, BX // index of first byte that differs XORQ AX, AX MOVB (SI)(BX*1), CX CMPB CX, (DI)(BX*1) SETHI AX LEAQ -1(AX*2), AX // convert 1/0 to +1/-1 RET // 0 through 16 bytes left, alen>=8, blen>=8 cmp_0through16: CMPQ BP, $8 JBE cmp_0through8 MOVQ (SI), AX MOVQ (DI), CX CMPQ AX, CX JNE cmp_diff8 cmp_0through8: MOVQ -8(SI)(BP*1), AX MOVQ -8(DI)(BP*1), CX CMPQ AX, CX JEQ cmp_allsame // AX and CX contain parts of a and b that differ. cmp_diff8: BSWAPQ AX // reverse order of bytes BSWAPQ CX XORQ AX, CX BSRQ CX, CX // index of highest bit difference SHRQ CX, AX // move a's bit to bottom ANDQ $1, AX // mask bit LEAQ -1(AX*2), AX // 1/0 => +1/-1 RET // 0-7 bytes in common cmp_small: LEAQ (BP*8), CX // bytes left -> bits left NEGQ CX // - bits lift (== 64 - bits left mod 64) JEQ cmp_allsame // load bytes of a into high bytes of AX CMPB SI, $0xf8 JA cmp_si_high MOVQ (SI), SI JMP cmp_si_finish cmp_si_high: MOVQ -8(SI)(BP*1), SI SHRQ CX, SI cmp_si_finish: SHLQ CX, SI // load bytes of b in to high bytes of BX CMPB DI, $0xf8 JA cmp_di_high MOVQ (DI), DI JMP cmp_di_finish cmp_di_high: MOVQ -8(DI)(BP*1), DI SHRQ CX, DI cmp_di_finish: SHLQ CX, DI BSWAPQ SI // reverse order of bytes BSWAPQ DI XORQ SI, DI // find bit differences JEQ cmp_allsame BSRQ DI, CX // index of highest bit difference SHRQ CX, SI // move a's bit to bottom ANDQ $1, SI // mask bit LEAQ -1(SI*2), AX // 1/0 => +1/-1 RET cmp_allsame: XORQ AX, AX XORQ CX, CX CMPQ BX, DX SETGT AX // 1 if alen > blen SETEQ CX // 1 if alen == blen LEAQ -1(CX)(AX*2), AX // 1,0,-1 result RET