// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "runtime/internal/sys" "unsafe" ) func mapaccess1_fast32(t *maptype, h *hmap, key uint32) unsafe.Pointer { if raceenabled && h != nil { callerpc := getcallerpc(unsafe.Pointer(&t)) racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapaccess1_fast32)) } if h == nil || h.count == 0 { return unsafe.Pointer(&zeroVal[0]) } if h.flags&hashWriting != 0 { throw("concurrent map read and map write") } var b *bmap if h.B == 0 { // One-bucket table. No need to hash. b = (*bmap)(h.buckets) } else { hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0)) m := uintptr(1)<>= 1 } oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize))) if !evacuated(oldb) { b = oldb } } } for { for i := uintptr(0); i < bucketCnt; i++ { k := *((*uint32)(add(unsafe.Pointer(b), dataOffset+i*4))) if k != key { continue } x := *((*uint8)(add(unsafe.Pointer(b), i))) // b.topbits[i] without the bounds check if x == empty { continue } return add(unsafe.Pointer(b), dataOffset+bucketCnt*4+i*uintptr(t.valuesize)) } b = b.overflow(t) if b == nil { return unsafe.Pointer(&zeroVal[0]) } } } func mapaccess2_fast32(t *maptype, h *hmap, key uint32) (unsafe.Pointer, bool) { if raceenabled && h != nil { callerpc := getcallerpc(unsafe.Pointer(&t)) racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapaccess2_fast32)) } if h == nil || h.count == 0 { return unsafe.Pointer(&zeroVal[0]), false } if h.flags&hashWriting != 0 { throw("concurrent map read and map write") } var b *bmap if h.B == 0 { // One-bucket table. No need to hash. b = (*bmap)(h.buckets) } else { hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0)) m := uintptr(1)<>= 1 } oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize))) if !evacuated(oldb) { b = oldb } } } for { for i := uintptr(0); i < bucketCnt; i++ { k := *((*uint32)(add(unsafe.Pointer(b), dataOffset+i*4))) if k != key { continue } x := *((*uint8)(add(unsafe.Pointer(b), i))) // b.topbits[i] without the bounds check if x == empty { continue } return add(unsafe.Pointer(b), dataOffset+bucketCnt*4+i*uintptr(t.valuesize)), true } b = b.overflow(t) if b == nil { return unsafe.Pointer(&zeroVal[0]), false } } } func mapaccess1_fast64(t *maptype, h *hmap, key uint64) unsafe.Pointer { if raceenabled && h != nil { callerpc := getcallerpc(unsafe.Pointer(&t)) racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapaccess1_fast64)) } if h == nil || h.count == 0 { return unsafe.Pointer(&zeroVal[0]) } if h.flags&hashWriting != 0 { throw("concurrent map read and map write") } var b *bmap if h.B == 0 { // One-bucket table. No need to hash. b = (*bmap)(h.buckets) } else { hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0)) m := uintptr(1)<>= 1 } oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize))) if !evacuated(oldb) { b = oldb } } } for { for i := uintptr(0); i < bucketCnt; i++ { k := *((*uint64)(add(unsafe.Pointer(b), dataOffset+i*8))) if k != key { continue } x := *((*uint8)(add(unsafe.Pointer(b), i))) // b.topbits[i] without the bounds check if x == empty { continue } return add(unsafe.Pointer(b), dataOffset+bucketCnt*8+i*uintptr(t.valuesize)) } b = b.overflow(t) if b == nil { return unsafe.Pointer(&zeroVal[0]) } } } func mapaccess2_fast64(t *maptype, h *hmap, key uint64) (unsafe.Pointer, bool) { if raceenabled && h != nil { callerpc := getcallerpc(unsafe.Pointer(&t)) racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapaccess2_fast64)) } if h == nil || h.count == 0 { return unsafe.Pointer(&zeroVal[0]), false } if h.flags&hashWriting != 0 { throw("concurrent map read and map write") } var b *bmap if h.B == 0 { // One-bucket table. No need to hash. b = (*bmap)(h.buckets) } else { hash := t.key.alg.hash(noescape(unsafe.Pointer(&key)), uintptr(h.hash0)) m := uintptr(1)<>= 1 } oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize))) if !evacuated(oldb) { b = oldb } } } for { for i := uintptr(0); i < bucketCnt; i++ { k := *((*uint64)(add(unsafe.Pointer(b), dataOffset+i*8))) if k != key { continue } x := *((*uint8)(add(unsafe.Pointer(b), i))) // b.topbits[i] without the bounds check if x == empty { continue } return add(unsafe.Pointer(b), dataOffset+bucketCnt*8+i*uintptr(t.valuesize)), true } b = b.overflow(t) if b == nil { return unsafe.Pointer(&zeroVal[0]), false } } } func mapaccess1_faststr(t *maptype, h *hmap, ky string) unsafe.Pointer { if raceenabled && h != nil { callerpc := getcallerpc(unsafe.Pointer(&t)) racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapaccess1_faststr)) } if h == nil || h.count == 0 { return unsafe.Pointer(&zeroVal[0]) } if h.flags&hashWriting != 0 { throw("concurrent map read and map write") } key := stringStructOf(&ky) if h.B == 0 { // One-bucket table. b := (*bmap)(h.buckets) if key.len < 32 { // short key, doing lots of comparisons is ok for i := uintptr(0); i < bucketCnt; i++ { x := *((*uint8)(add(unsafe.Pointer(b), i))) // b.topbits[i] without the bounds check if x == empty { continue } k := (*stringStruct)(add(unsafe.Pointer(b), dataOffset+i*2*sys.PtrSize)) if k.len != key.len { continue } if k.str == key.str || memequal(k.str, key.str, uintptr(key.len)) { return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize)) } } return unsafe.Pointer(&zeroVal[0]) } // long key, try not to do more comparisons than necessary keymaybe := uintptr(bucketCnt) for i := uintptr(0); i < bucketCnt; i++ { x := *((*uint8)(add(unsafe.Pointer(b), i))) // b.topbits[i] without the bounds check if x == empty { continue } k := (*stringStruct)(add(unsafe.Pointer(b), dataOffset+i*2*sys.PtrSize)) if k.len != key.len { continue } if k.str == key.str { return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize)) } // check first 4 bytes // TODO: on amd64/386 at least, make this compile to one 4-byte comparison instead of // four 1-byte comparisons. if *((*[4]byte)(key.str)) != *((*[4]byte)(k.str)) { continue } // check last 4 bytes if *((*[4]byte)(add(key.str, uintptr(key.len)-4))) != *((*[4]byte)(add(k.str, uintptr(key.len)-4))) { continue } if keymaybe != bucketCnt { // Two keys are potential matches. Use hash to distinguish them. goto dohash } keymaybe = i } if keymaybe != bucketCnt { k := (*stringStruct)(add(unsafe.Pointer(b), dataOffset+keymaybe*2*sys.PtrSize)) if memequal(k.str, key.str, uintptr(key.len)) { return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+keymaybe*uintptr(t.valuesize)) } } return unsafe.Pointer(&zeroVal[0]) } dohash: hash := t.key.alg.hash(noescape(unsafe.Pointer(&ky)), uintptr(h.hash0)) m := uintptr(1)<>= 1 } oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize))) if !evacuated(oldb) { b = oldb } } top := uint8(hash >> (sys.PtrSize*8 - 8)) if top < minTopHash { top += minTopHash } for { for i := uintptr(0); i < bucketCnt; i++ { x := *((*uint8)(add(unsafe.Pointer(b), i))) // b.topbits[i] without the bounds check if x != top { continue } k := (*stringStruct)(add(unsafe.Pointer(b), dataOffset+i*2*sys.PtrSize)) if k.len != key.len { continue } if k.str == key.str || memequal(k.str, key.str, uintptr(key.len)) { return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize)) } } b = b.overflow(t) if b == nil { return unsafe.Pointer(&zeroVal[0]) } } } func mapaccess2_faststr(t *maptype, h *hmap, ky string) (unsafe.Pointer, bool) { if raceenabled && h != nil { callerpc := getcallerpc(unsafe.Pointer(&t)) racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapaccess2_faststr)) } if h == nil || h.count == 0 { return unsafe.Pointer(&zeroVal[0]), false } if h.flags&hashWriting != 0 { throw("concurrent map read and map write") } key := stringStructOf(&ky) if h.B == 0 { // One-bucket table. b := (*bmap)(h.buckets) if key.len < 32 { // short key, doing lots of comparisons is ok for i := uintptr(0); i < bucketCnt; i++ { x := *((*uint8)(add(unsafe.Pointer(b), i))) // b.topbits[i] without the bounds check if x == empty { continue } k := (*stringStruct)(add(unsafe.Pointer(b), dataOffset+i*2*sys.PtrSize)) if k.len != key.len { continue } if k.str == key.str || memequal(k.str, key.str, uintptr(key.len)) { return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize)), true } } return unsafe.Pointer(&zeroVal[0]), false } // long key, try not to do more comparisons than necessary keymaybe := uintptr(bucketCnt) for i := uintptr(0); i < bucketCnt; i++ { x := *((*uint8)(add(unsafe.Pointer(b), i))) // b.topbits[i] without the bounds check if x == empty { continue } k := (*stringStruct)(add(unsafe.Pointer(b), dataOffset+i*2*sys.PtrSize)) if k.len != key.len { continue } if k.str == key.str { return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize)), true } // check first 4 bytes if *((*[4]byte)(key.str)) != *((*[4]byte)(k.str)) { continue } // check last 4 bytes if *((*[4]byte)(add(key.str, uintptr(key.len)-4))) != *((*[4]byte)(add(k.str, uintptr(key.len)-4))) { continue } if keymaybe != bucketCnt { // Two keys are potential matches. Use hash to distinguish them. goto dohash } keymaybe = i } if keymaybe != bucketCnt { k := (*stringStruct)(add(unsafe.Pointer(b), dataOffset+keymaybe*2*sys.PtrSize)) if memequal(k.str, key.str, uintptr(key.len)) { return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+keymaybe*uintptr(t.valuesize)), true } } return unsafe.Pointer(&zeroVal[0]), false } dohash: hash := t.key.alg.hash(noescape(unsafe.Pointer(&ky)), uintptr(h.hash0)) m := uintptr(1)<>= 1 } oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize))) if !evacuated(oldb) { b = oldb } } top := uint8(hash >> (sys.PtrSize*8 - 8)) if top < minTopHash { top += minTopHash } for { for i := uintptr(0); i < bucketCnt; i++ { x := *((*uint8)(add(unsafe.Pointer(b), i))) // b.topbits[i] without the bounds check if x != top { continue } k := (*stringStruct)(add(unsafe.Pointer(b), dataOffset+i*2*sys.PtrSize)) if k.len != key.len { continue } if k.str == key.str || memequal(k.str, key.str, uintptr(key.len)) { return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize)), true } } b = b.overflow(t) if b == nil { return unsafe.Pointer(&zeroVal[0]), false } } }