// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package Parser import Scanner "scanner" import AST "ast" export type Parser struct { // Tracing/debugging verbose, sixg, deps bool; indent uint; // Scanner scanner *Scanner.Scanner; tokchan *<-chan *Scanner.Token; comments *AST.List; // Scanner.Token pos int; // token source position tok int; // one token look-ahead val string; // token value (for IDENT, NUMBER, STRING only) // Non-syntactic parser control opt_semi bool; // true if semicolon is optional // Nesting levels expr_lev int; // 0 = control clause level, 1 = expr inside ()'s scope_lev int; // 0 = global scope, 1 = function scope of global functions, etc. }; // ---------------------------------------------------------------------------- // Support functions func (P *Parser) PrintIndent() { for i := P.indent; i > 0; i-- { print(". "); } } func (P *Parser) Trace(msg string) { if P.verbose { P.PrintIndent(); print(msg, " {\n"); } P.indent++; // always check proper identation } func (P *Parser) Ecart() { P.indent--; // always check proper identation if P.verbose { P.PrintIndent(); print("}\n"); } } func (P *Parser) Next0() { if P.tokchan == nil { P.pos, P.tok, P.val = P.scanner.Scan(); } else { t := <-P.tokchan; P.tok, P.pos, P.val = t.tok, t.pos, t.val; } P.opt_semi = false; if P.verbose { P.PrintIndent(); print("[", P.pos, "] ", Scanner.TokenString(P.tok), "\n"); } } func (P *Parser) Next() { for P.Next0(); P.tok == Scanner.COMMENT; P.Next0() { P.comments.Add(AST.NewComment(P.pos, P.val)); } } func (P *Parser) Open(verbose, sixg, deps bool, scanner *Scanner.Scanner, tokchan *<-chan *Scanner.Token) { P.verbose = verbose; P.sixg = sixg; P.deps = deps; P.indent = 0; P.scanner = scanner; P.tokchan = tokchan; P.comments = AST.NewList(); P.Next(); P.expr_lev = 0; P.scope_lev = 0; } func (P *Parser) Error(pos int, msg string) { P.scanner.Error(pos, msg); } func (P *Parser) Expect(tok int) { if P.tok != tok { msg := "expected '" + Scanner.TokenString(tok) + "', found '" + Scanner.TokenString(P.tok) + "'"; switch P.tok { case Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING: msg += " " + P.val; } P.Error(P.pos, msg); } P.Next(); // make progress in any case } func (P *Parser) OptSemicolon() { if P.tok == Scanner.SEMICOLON { P.Next(); } } // ---------------------------------------------------------------------------- // AST support func ExprType(x *AST.Expr) *AST.Type { var t *AST.Type; if x.tok == Scanner.TYPE { t = x.t; } else if x.tok == Scanner.IDENT { // assume a type name t = AST.NewType(x.pos, Scanner.IDENT); t.expr = x; } else if x.tok == Scanner.PERIOD && x.y != nil && ExprType(x.x) != nil { // possibly a qualified (type) identifier t = AST.NewType(x.pos, Scanner.IDENT); t.expr = x; } return t; } func (P *Parser) NoType(x *AST.Expr) *AST.Expr { if x != nil && x.tok == Scanner.TYPE { P.Error(x.pos, "expected expression, found type"); x = AST.NewLit(x.pos, Scanner.INT, ""); } return x; } func (P *Parser) NewExpr(pos, tok int, x, y *AST.Expr) *AST.Expr { return AST.NewExpr(pos, tok, P.NoType(x), P.NoType(y)); } // ---------------------------------------------------------------------------- // Common productions func (P *Parser) TryType() *AST.Type; func (P *Parser) ParseExpression(prec int) *AST.Expr; func (P *Parser) ParseStatement() *AST.Stat; func (P *Parser) ParseDeclaration() *AST.Decl; func (P *Parser) ParseIdent() *AST.Expr { P.Trace("Ident"); x := AST.BadExpr; if P.tok == Scanner.IDENT { x = AST.NewLit(P.pos, Scanner.IDENT, P.val); if P.verbose { P.PrintIndent(); print("Ident = \"", x.s, "\"\n"); } P.Next(); } else { P.Expect(Scanner.IDENT); // use Expect() error handling } P.Ecart(); return x; } func (P *Parser) ParseIdentList() *AST.Expr { P.Trace("IdentList"); x := P.ParseIdent(); for first := true; P.tok == Scanner.COMMA; { pos := P.pos; P.Next(); y := P.ParseIdent(); if first { x = P.NewExpr(pos, Scanner.COMMA, x, y); first = false; } else { x.y = P.NewExpr(pos, Scanner.COMMA, x.y, y); } } P.Ecart(); return x; } // ---------------------------------------------------------------------------- // Types func (P *Parser) ParseType() *AST.Type { P.Trace("Type"); t := P.TryType(); if t == nil { P.Error(P.pos, "type expected"); t = AST.BadType; } P.Ecart(); return t; } func (P *Parser) ParseVarType() *AST.Type { P.Trace("VarType"); typ := P.ParseType(); P.Ecart(); return typ; } func (P *Parser) ParseQualifiedIdent() *AST.Expr { P.Trace("QualifiedIdent"); x := P.ParseIdent(); for P.tok == Scanner.PERIOD { pos := P.pos; P.Next(); y := P.ParseIdent(); x = P.NewExpr(pos, Scanner.PERIOD, x, y); } P.Ecart(); return x; } func (P *Parser) ParseTypeName() *AST.Type { P.Trace("TypeName"); t := AST.NewType(P.pos, P.tok); t.expr = P.ParseQualifiedIdent(); P.Ecart(); return t; } func (P *Parser) ParseArrayType() *AST.Type { P.Trace("ArrayType"); t := AST.NewType(P.pos, Scanner.LBRACK); P.Expect(Scanner.LBRACK); if P.tok != Scanner.RBRACK { t.expr = P.ParseExpression(1); } P.Expect(Scanner.RBRACK); t.elt = P.ParseType(); P.Ecart(); return t; } func (P *Parser) ParseChannelType() *AST.Type { P.Trace("ChannelType"); t := AST.NewType(P.pos, Scanner.CHAN); t.mode = AST.FULL; if P.tok == Scanner.CHAN { P.Next(); if P.tok == Scanner.ARROW { P.Next(); t.mode = AST.SEND; } } else { P.Expect(Scanner.ARROW); P.Expect(Scanner.CHAN); t.mode = AST.RECV; } t.elt = P.ParseVarType(); P.Ecart(); return t; } // TODO: The code below (ParseVarDecl, ParseVarDeclList) is all too // complicated. There must be a better way to do this. func (P *Parser) ParseVarDecl(expect_ident bool) *AST.Type { t := AST.BadType; if expect_ident { x := P.ParseIdent(); t = AST.NewType(x.pos, Scanner.IDENT); t.expr = x; } else if P.tok == Scanner.ELLIPSIS { t = AST.NewType(P.pos, Scanner.ELLIPSIS); P.Next(); } else { t = P.ParseType(); } return t; } func (P *Parser) ParseVarDeclList(list *AST.List, ellipsis_ok bool) { P.Trace("VarDeclList"); // parse a list of types i0 := list.len(); for { list.Add(P.ParseVarDecl(i0 > 0)); if P.tok == Scanner.COMMA { P.Next(); } else { break; } } typ := P.TryType(); if typ == nil && P.tok == Scanner.ELLIPSIS { typ = AST.NewType(P.pos, Scanner.ELLIPSIS); P.Next(); } if i0 > 0 && typ == nil { // not the first parameter section; we must have a type P.Error(P.pos, "type expected"); typ = AST.BadType; } // convert the list into a list of (type) expressions if typ != nil { // all list entries must be identifiers // convert the type entries into identifiers for i, n := i0, list.len(); i < n; i++ { t := list.at(i).(*AST.Type); if t.tok == Scanner.IDENT && t.expr.tok == Scanner.IDENT { list.set(i, t.expr); } else { list.set(i, AST.BadExpr); P.Error(t.pos, "identifier expected"); } } // add type list.Add(AST.NewTypeExpr(typ)); } else { // all list entries are types // convert all type entries into type expressions if i0 > 0 { panic("internal parser error"); } for i, n := 0, list.len(); i < n; i++ { t := list.at(i).(*AST.Type); list.set(i, AST.NewTypeExpr(t)); } if P.tok == Scanner.COMMA { panic("internal parser error"); } } P.Ecart(); } func (P *Parser) ParseParameterList(ellipsis_ok bool) *AST.List { P.Trace("ParameterList"); list := AST.NewList(); P.ParseVarDeclList(list, ellipsis_ok); for P.tok == Scanner.COMMA { P.Next(); P.ParseVarDeclList(list, ellipsis_ok); } P.Ecart(); return list; } func (P *Parser) ParseParameters(ellipsis_ok bool) *AST.Type { P.Trace("Parameters"); t := AST.NewType(P.pos, Scanner.STRUCT); P.Expect(Scanner.LPAREN); if P.tok != Scanner.RPAREN { t.list = P.ParseParameterList(ellipsis_ok); } P.Expect(Scanner.RPAREN); P.Ecart(); return t; } func (P *Parser) ParseResultList() { P.Trace("ResultList"); P.ParseType(); for P.tok == Scanner.COMMA { P.Next(); P.ParseType(); } if P.tok != Scanner.RPAREN { P.ParseType(); } P.Ecart(); } func (P *Parser) ParseResult() *AST.Type { P.Trace("Result"); var t *AST.Type; if P.tok == Scanner.LPAREN { t = P.ParseParameters(false); } else { typ := P.TryType(); if typ != nil { t = AST.NewType(P.pos, Scanner.STRUCT); t.list = AST.NewList(); t.list.Add(AST.NewTypeExpr(typ)); } } P.Ecart(); return t; } // Function types // // (params) // (params) type // (params) (results) func (P *Parser) ParseFunctionType() *AST.Type { P.Trace("FunctionType"); t := AST.NewType(P.pos, Scanner.LPAREN); t.list = P.ParseParameters(true).list; // TODO find better solution t.elt = P.ParseResult(); P.Ecart(); return t; } func (P *Parser) ParseMethodSpec(list *AST.List) { P.Trace("MethodDecl"); list.Add(P.ParseIdent()); list.Add(AST.NewTypeExpr(P.ParseFunctionType())); P.Ecart(); } func (P *Parser) ParseInterfaceType() *AST.Type { P.Trace("InterfaceType"); t := AST.NewType(P.pos, Scanner.INTERFACE); P.Expect(Scanner.INTERFACE); if P.tok == Scanner.LBRACE { P.Next(); t.list = AST.NewList(); for P.tok == Scanner.IDENT { P.ParseMethodSpec(t.list); if P.tok != Scanner.RBRACE { P.Expect(Scanner.SEMICOLON); } } P.Expect(Scanner.RBRACE); } P.Ecart(); return t; } func (P *Parser) ParseMapType() *AST.Type { P.Trace("MapType"); t := AST.NewType(P.pos, Scanner.MAP); P.Expect(Scanner.MAP); P.Expect(Scanner.LBRACK); t.key = P.ParseVarType(); P.Expect(Scanner.RBRACK); t.elt = P.ParseVarType(); P.Ecart(); return t; } func (P *Parser) ParseStructType() *AST.Type { P.Trace("StructType"); t := AST.NewType(P.pos, Scanner.STRUCT); P.Expect(Scanner.STRUCT); if P.tok == Scanner.LBRACE { P.Next(); t.list = AST.NewList(); for P.tok == Scanner.IDENT { P.ParseVarDeclList(t.list, false); if P.tok != Scanner.RBRACE { P.Expect(Scanner.SEMICOLON); } } P.OptSemicolon(); P.Expect(Scanner.RBRACE); } P.Ecart(); return t; } func (P *Parser) ParsePointerType() *AST.Type { P.Trace("PointerType"); t := AST.NewType(P.pos, Scanner.MUL); P.Expect(Scanner.MUL); t.elt = P.ParseType(); P.Ecart(); return t; } func (P *Parser) TryType() *AST.Type { P.Trace("Type (try)"); t := AST.BadType; switch P.tok { case Scanner.IDENT: t = P.ParseTypeName(); case Scanner.LBRACK: t = P.ParseArrayType(); case Scanner.CHAN, Scanner.ARROW: t = P.ParseChannelType(); case Scanner.INTERFACE: t = P.ParseInterfaceType(); case Scanner.LPAREN: t = P.ParseFunctionType(); case Scanner.MAP: t = P.ParseMapType(); case Scanner.STRUCT: t = P.ParseStructType(); case Scanner.MUL: t = P.ParsePointerType(); default: t = nil; // no type found } P.Ecart(); return t; } // ---------------------------------------------------------------------------- // Blocks func (P *Parser) ParseStatementList() *AST.List { P.Trace("StatementList"); list := AST.NewList(); for P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { s := P.ParseStatement(); if s != nil { // not the empty statement list.Add(s); } if P.tok == Scanner.SEMICOLON { P.Next(); } else if P.opt_semi { P.opt_semi = false; // "consume" optional semicolon } else { break; } } // Try to provide a good error message if P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { P.Error(P.pos, "expected end of statement list (semicolon missing?)"); } P.Ecart(); return list; } func (P *Parser) ParseBlock() *AST.List { P.Trace("Block"); P.Expect(Scanner.LBRACE); s := P.ParseStatementList(); P.Expect(Scanner.RBRACE); P.opt_semi = true; P.Ecart(); return s; } // ---------------------------------------------------------------------------- // Expressions func (P *Parser) ParseExpressionList() *AST.Expr { P.Trace("ExpressionList"); x := P.ParseExpression(1); for first := true; P.tok == Scanner.COMMA; { pos := P.pos; P.Next(); y := P.ParseExpression(1); if first { x = P.NewExpr(pos, Scanner.COMMA, x, y); first = false; } else { x.y = P.NewExpr(pos, Scanner.COMMA, x.y, y); } } P.Ecart(); return x; } func (P *Parser) ParseFunctionLit() *AST.Expr { P.Trace("FunctionLit"); x := AST.NewLit(P.pos, Scanner.FUNC, ""); P.Expect(Scanner.FUNC); x.t = P.ParseFunctionType(); P.expr_lev++; P.scope_lev++; x.block = P.ParseBlock(); P.scope_lev--; P.expr_lev--; P.Ecart(); return x; } /* func (P *Parser) ParseNewCall() *AST.Expr { P.Trace("NewCall"); x := AST.NewExpr(P.pos, Scanner.NEW, nil, nil); P.Next(); P.Expect(Scanner.LPAREN); P.expr_lev++; x.t = P.ParseType(); if P.tok == Scanner.COMMA { P.Next(); x.y = P.ParseExpressionList(); } P.expr_lev--; P.Expect(Scanner.RPAREN); P.Ecart(); return x; } */ func (P *Parser) ParseOperand() *AST.Expr { P.Trace("Operand"); x := AST.BadExpr; switch P.tok { case Scanner.IDENT: x = P.ParseIdent(); case Scanner.LPAREN: // TODO we could have a function type here as in: new(*()) // (currently not working) P.Next(); P.expr_lev++; x = P.ParseExpression(1); P.expr_lev--; P.Expect(Scanner.RPAREN); case Scanner.INT, Scanner.FLOAT, Scanner.STRING: x = AST.NewLit(P.pos, P.tok, P.val); P.Next(); if x.tok == Scanner.STRING { for ; P.tok == Scanner.STRING; P.Next() { x.s += P.val; } } case Scanner.FUNC: x = P.ParseFunctionLit(); /* case Scanner.NEW: x = P.ParseNewCall(); */ default: t := P.TryType(); if t != nil { x = AST.NewTypeExpr(t); } else { P.Error(P.pos, "operand expected"); P.Next(); // make progress } } P.Ecart(); return x; } func (P *Parser) ParseSelectorOrTypeGuard(x *AST.Expr) *AST.Expr { P.Trace("SelectorOrTypeGuard"); x = P.NewExpr(P.pos, Scanner.PERIOD, x, nil); P.Expect(Scanner.PERIOD); if P.tok == Scanner.IDENT { x.y = P.ParseIdent(); } else { P.Expect(Scanner.LPAREN); x.t = P.ParseType(); P.Expect(Scanner.RPAREN); } P.Ecart(); return x; } func (P *Parser) ParseIndex(x *AST.Expr) *AST.Expr { P.Trace("IndexOrSlice"); pos := P.pos; P.Expect(Scanner.LBRACK); P.expr_lev++; i := P.ParseExpression(0); P.expr_lev--; P.Expect(Scanner.RBRACK); P.Ecart(); return P.NewExpr(pos, Scanner.LBRACK, x, i); } func (P *Parser) ParseBinaryExpr(prec1 int) *AST.Expr func (P *Parser) ParseCall(x0 *AST.Expr) *AST.Expr { P.Trace("Call"); x := P.NewExpr(P.pos, Scanner.LPAREN, x0, nil); P.Expect(Scanner.LPAREN); if P.tok != Scanner.RPAREN { P.expr_lev++; var t *AST.Type; if x0.tok == Scanner.IDENT && x0.s == "new" { // heuristic: assume it's a new(T, ...) call, try to parse a type t = P.TryType(); } if t != nil { // we found a type x.y = AST.NewTypeExpr(t); if P.tok == Scanner.COMMA { pos := P.pos; P.Next(); y := P.ParseExpressionList(); // create list manually because NewExpr checks for type expressions z := AST.NewExpr(pos, Scanner.COMMA, nil, y); z.x = x.y; x.y = z; } } else { // normal argument list x.y = P.ParseExpressionList(); } P.expr_lev--; } P.Expect(Scanner.RPAREN); P.Ecart(); return x; } func (P *Parser) ParseCompositeElements() *AST.Expr { x := P.ParseExpression(0); if P.tok == Scanner.COMMA { pos := P.pos; P.Next(); // first element determines mode singles := true; if x.tok == Scanner.COLON { singles = false; } for first := true; P.tok != Scanner.RBRACE && P.tok != Scanner.EOF; { y := P.ParseExpression(0); if singles { if y.tok == Scanner.COLON { P.Error(y.x.pos, "single value expected; found pair"); } } else { if y.tok != Scanner.COLON { P.Error(y.pos, "key:value pair expected; found single value"); } } if first { x = P.NewExpr(pos, Scanner.COMMA, x, y); } else { x.y = P.NewExpr(pos, Scanner.COMMA, x.y, y); } if P.tok == Scanner.COMMA { pos = P.pos; P.Next(); } else { break; } } } return x; } func (P *Parser) ParseCompositeLit(t *AST.Type) *AST.Expr { P.Trace("CompositeLit"); x := P.NewExpr(P.pos, Scanner.LBRACE, nil, nil); x.t = t; P.Expect(Scanner.LBRACE); if P.tok != Scanner.RBRACE { x.y = P.ParseCompositeElements(); } P.Expect(Scanner.RBRACE); P.Ecart(); return x; } func (P *Parser) ParsePrimaryExpr() *AST.Expr { P.Trace("PrimaryExpr"); x := P.ParseOperand(); for { switch P.tok { case Scanner.PERIOD: x = P.ParseSelectorOrTypeGuard(x); case Scanner.LBRACK: x = P.ParseIndex(x); case Scanner.LPAREN: x = P.ParseCall(x); case Scanner.LBRACE: // assume a composite literal only if x could be a type // and if we are not inside control clause (expr_lev >= 0) // (composites inside control clauses must be parenthesized) var t *AST.Type; if P.expr_lev >= 0 { t = ExprType(x); } if t != nil { x = P.ParseCompositeLit(t); } else { goto exit; } default: goto exit; } } exit: P.Ecart(); return x; } func (P *Parser) ParseUnaryExpr() *AST.Expr { P.Trace("UnaryExpr"); x := AST.BadExpr; switch P.tok { case Scanner.ADD, Scanner.SUB, Scanner.MUL, Scanner.NOT, Scanner.XOR, Scanner.ARROW, Scanner.AND: pos, tok := P.pos, P.tok; P.Next(); y := P.ParseUnaryExpr(); if tok == Scanner.MUL && y.tok == Scanner.TYPE { // pointer type t := AST.NewType(pos, Scanner.MUL); t.elt = y.t; x = AST.NewTypeExpr(t); } else { x = P.NewExpr(pos, tok, nil, y); } default: x = P.ParsePrimaryExpr(); } P.Ecart(); return x; } func (P *Parser) ParseBinaryExpr(prec1 int) *AST.Expr { P.Trace("BinaryExpr"); x := P.ParseUnaryExpr(); for prec := Scanner.Precedence(P.tok); prec >= prec1; prec-- { for Scanner.Precedence(P.tok) == prec { pos, tok := P.pos, P.tok; P.Next(); y := P.ParseBinaryExpr(prec + 1); x = P.NewExpr(pos, tok, x, y); } } P.Ecart(); return x; } func (P *Parser) ParseExpression(prec int) *AST.Expr { P.Trace("Expression"); indent := P.indent; if prec < 0 { panic("precedence must be >= 0"); } x := P.NoType(P.ParseBinaryExpr(prec)); if indent != P.indent { panic("imbalanced tracing code (Expression)"); } P.Ecart(); return x; } // ---------------------------------------------------------------------------- // Statements func (P *Parser) ParseSimpleStat() *AST.Stat { P.Trace("SimpleStat"); s := AST.BadStat; x := P.ParseExpressionList(); switch P.tok { case Scanner.COLON: // label declaration s = AST.NewStat(P.pos, Scanner.COLON); s.expr = x; if x.len() != 1 { P.Error(x.pos, "illegal label declaration"); } P.Next(); // consume ":" P.opt_semi = true; case Scanner.DEFINE, Scanner.ASSIGN, Scanner.ADD_ASSIGN, Scanner.SUB_ASSIGN, Scanner.MUL_ASSIGN, Scanner.QUO_ASSIGN, Scanner.REM_ASSIGN, Scanner.AND_ASSIGN, Scanner.OR_ASSIGN, Scanner.XOR_ASSIGN, Scanner.SHL_ASSIGN, Scanner.SHR_ASSIGN: // assignment pos, tok := P.pos, P.tok; P.Next(); y := P.ParseExpressionList(); if xl, yl := x.len(), y.len(); xl > 1 && yl > 1 && xl != yl { P.Error(x.pos, "arity of lhs doesn't match rhs"); } s = AST.NewStat(x.pos, Scanner.EXPRSTAT); s.expr = AST.NewExpr(pos, tok, x, y); default: var pos, tok int; if P.tok == Scanner.INC || P.tok == Scanner.DEC { pos, tok = P.pos, P.tok; P.Next(); } else { pos, tok = x.pos, Scanner.EXPRSTAT; } s = AST.NewStat(pos, tok); s.expr = x; if x.len() != 1 { P.Error(x.pos, "only one expression allowed"); } } P.Ecart(); return s; } func (P *Parser) ParseGoStat() *AST.Stat { P.Trace("GoStat"); s := AST.NewStat(P.pos, Scanner.GO); P.Expect(Scanner.GO); s.expr = P.ParseExpression(1); P.Ecart(); return s; } func (P *Parser) ParseReturnStat() *AST.Stat { P.Trace("ReturnStat"); s := AST.NewStat(P.pos, Scanner.RETURN); P.Expect(Scanner.RETURN); if P.tok != Scanner.SEMICOLON && P.tok != Scanner.RBRACE { s.expr = P.ParseExpressionList(); } P.Ecart(); return s; } func (P *Parser) ParseControlFlowStat(tok int) *AST.Stat { P.Trace("ControlFlowStat"); s := AST.NewStat(P.pos, tok); P.Expect(tok); if tok != Scanner.FALLTHROUGH && P.tok == Scanner.IDENT { s.expr = P.ParseIdent(); } P.Ecart(); return s; } func (P *Parser) ParseControlClause(keyword int) *AST.Stat { P.Trace("ControlClause"); s := AST.NewStat(P.pos, keyword); P.Expect(keyword); if P.tok != Scanner.LBRACE { prev_lev := P.expr_lev; P.expr_lev = -1; if P.tok != Scanner.SEMICOLON { s.init = P.ParseSimpleStat(); } if P.tok == Scanner.SEMICOLON { P.Next(); if P.tok != Scanner.SEMICOLON && P.tok != Scanner.LBRACE { s.expr = P.ParseExpression(1); } if keyword == Scanner.FOR { P.Expect(Scanner.SEMICOLON); if P.tok != Scanner.LBRACE { s.post = P.ParseSimpleStat(); } } } else { if s.init != nil { // guard in case of errors s.expr, s.init = s.init.expr, nil; } } P.expr_lev = prev_lev; } P.Ecart(); return s; } func (P *Parser) ParseIfStat() *AST.Stat { P.Trace("IfStat"); s := P.ParseControlClause(Scanner.IF); s.block = P.ParseBlock(); if P.tok == Scanner.ELSE { P.Next(); s1 := AST.BadStat; if P.sixg { s1 = P.ParseStatement(); if s1 != nil { // not the empty statement if s1.tok != Scanner.LBRACE { // wrap in a block if we don't have one b := AST.NewStat(P.pos, Scanner.LBRACE); b.block = AST.NewList(); b.block.Add(s1); s1 = b; } s.post = s1; } } else if P.tok == Scanner.IF { s1 = P.ParseIfStat(); } else { s1 = AST.NewStat(P.pos, Scanner.LBRACE); s1.block = P.ParseBlock(); } s.post = s1; } P.Ecart(); return s; } func (P *Parser) ParseForStat() *AST.Stat { P.Trace("ForStat"); s := P.ParseControlClause(Scanner.FOR); s.block = P.ParseBlock(); P.Ecart(); return s; } func (P *Parser) ParseCase() *AST.Stat { P.Trace("Case"); s := AST.NewStat(P.pos, P.tok); if P.tok == Scanner.CASE { P.Next(); s.expr = P.ParseExpressionList(); } else { P.Expect(Scanner.DEFAULT); } P.Expect(Scanner.COLON); P.Ecart(); return s; } func (P *Parser) ParseCaseClause() *AST.Stat { P.Trace("CaseClause"); s := P.ParseCase(); if P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE { s.block = P.ParseStatementList(); } P.Ecart(); return s; } func (P *Parser) ParseSwitchStat() *AST.Stat { P.Trace("SwitchStat"); s := P.ParseControlClause(Scanner.SWITCH); s.block = AST.NewList(); P.Expect(Scanner.LBRACE); for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { s.block.Add(P.ParseCaseClause()); } P.Expect(Scanner.RBRACE); P.opt_semi = true; P.Ecart(); return s; } func (P *Parser) ParseCommCase() *AST.Stat { P.Trace("CommCase"); s := AST.NewStat(P.pos, Scanner.CASE); if P.tok == Scanner.CASE { P.Next(); x := P.ParseExpression(1); if P.tok == Scanner.ASSIGN || P.tok == Scanner.DEFINE { pos, tok := P.pos, P.tok; P.Next(); if P.tok == Scanner.ARROW { y := P.ParseExpression(1); x = AST.NewExpr(pos, tok, x, y); } else { P.Expect(Scanner.ARROW); // use Expect() error handling } } s.expr = x; } else { P.Expect(Scanner.DEFAULT); } P.Expect(Scanner.COLON); P.Ecart(); return s; } func (P *Parser) ParseCommClause() *AST.Stat { P.Trace("CommClause"); s := P.ParseCommCase(); if P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE { s.block = P.ParseStatementList(); } P.Ecart(); return s; } func (P *Parser) ParseSelectStat() *AST.Stat { P.Trace("SelectStat"); s := AST.NewStat(P.pos, Scanner.SELECT); s.block = AST.NewList(); P.Expect(Scanner.SELECT); P.Expect(Scanner.LBRACE); for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { s.block.Add(P.ParseCommClause()); } P.Expect(Scanner.RBRACE); P.opt_semi = true; P.Ecart(); return s; } func (P *Parser) ParseRangeStat() *AST.Stat { P.Trace("RangeStat"); s := AST.NewStat(P.pos, Scanner.RANGE); P.Expect(Scanner.RANGE); P.ParseIdentList(); P.Expect(Scanner.DEFINE); s.expr = P.ParseExpression(1); s.block = P.ParseBlock(); P.Ecart(); return s; } func (P *Parser) ParseStatement() *AST.Stat { P.Trace("Statement"); indent := P.indent; s := AST.BadStat; switch P.tok { case Scanner.CONST, Scanner.TYPE, Scanner.VAR: s = AST.NewStat(P.pos, P.tok); s.decl = P.ParseDeclaration(); case Scanner.FUNC: // for now we do not allow local function declarations, // instead we assume this starts a function literal fallthrough; case // only the tokens that are legal top-level expression starts Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING, Scanner.LPAREN, // operand Scanner.LBRACK, Scanner.STRUCT, // composite type Scanner.MUL, Scanner.AND, Scanner.ARROW: // unary s = P.ParseSimpleStat(); case Scanner.GO: s = P.ParseGoStat(); case Scanner.RETURN: s = P.ParseReturnStat(); case Scanner.BREAK, Scanner.CONTINUE, Scanner.GOTO, Scanner.FALLTHROUGH: s = P.ParseControlFlowStat(P.tok); case Scanner.LBRACE: s = AST.NewStat(P.pos, Scanner.LBRACE); s.block = P.ParseBlock(); case Scanner.IF: s = P.ParseIfStat(); case Scanner.FOR: s = P.ParseForStat(); case Scanner.SWITCH: s = P.ParseSwitchStat(); case Scanner.RANGE: s = P.ParseRangeStat(); case Scanner.SELECT: s = P.ParseSelectStat(); default: // empty statement s = nil; } if indent != P.indent { panic("imbalanced tracing code (Statement)"); } P.Ecart(); return s; } // ---------------------------------------------------------------------------- // Declarations func (P *Parser) ParseImportSpec() *AST.Decl { P.Trace("ImportSpec"); d := AST.NewDecl(P.pos, Scanner.IMPORT, false); if P.tok == Scanner.PERIOD { P.Error(P.pos, `"import ." not yet handled properly`); P.Next(); } else if P.tok == Scanner.IDENT { d.ident = P.ParseIdent(); } if P.tok == Scanner.STRING { // TODO eventually the scanner should strip the quotes d.val = AST.NewLit(P.pos, Scanner.STRING, P.val); P.Next(); } else { P.Expect(Scanner.STRING); // use Expect() error handling } P.Ecart(); return d; } func (P *Parser) ParseConstSpec(exported bool) *AST.Decl { P.Trace("ConstSpec"); d := AST.NewDecl(P.pos, Scanner.CONST, exported); d.ident = P.ParseIdent(); d.typ = P.TryType(); if P.tok == Scanner.ASSIGN { P.Next(); d.val = P.ParseExpression(1); } P.Ecart(); return d; } func (P *Parser) ParseTypeSpec(exported bool) *AST.Decl { P.Trace("TypeSpec"); d := AST.NewDecl(P.pos, Scanner.TYPE, exported); d.ident = P.ParseIdent(); d.typ = P.ParseType(); P.opt_semi = true; P.Ecart(); return d; } func (P *Parser) ParseVarSpec(exported bool) *AST.Decl { P.Trace("VarSpec"); d := AST.NewDecl(P.pos, Scanner.VAR, exported); d.ident = P.ParseIdentList(); if P.tok == Scanner.ASSIGN { P.Next(); d.val = P.ParseExpressionList(); } else { d.typ = P.ParseVarType(); if P.tok == Scanner.ASSIGN { P.Next(); d.val = P.ParseExpressionList(); } } P.Ecart(); return d; } // TODO replace this by using function pointers derived from methods func (P *Parser) ParseSpec(exported bool, keyword int) *AST.Decl { switch keyword { case Scanner.IMPORT: return P.ParseImportSpec(); case Scanner.CONST: return P.ParseConstSpec(exported); case Scanner.TYPE: return P.ParseTypeSpec(exported); case Scanner.VAR: return P.ParseVarSpec(exported); } panic("UNREACHABLE"); return nil; } func (P *Parser) ParseDecl(exported bool, keyword int) *AST.Decl { P.Trace("Decl"); d := AST.BadDecl; P.Expect(keyword); if P.tok == Scanner.LPAREN { P.Next(); d = AST.NewDecl(P.pos, keyword, exported); d.list = AST.NewList(); for P.tok != Scanner.RPAREN && P.tok != Scanner.EOF { d.list.Add(P.ParseSpec(exported, keyword)); if P.tok == Scanner.SEMICOLON { P.Next(); } else { break; } } P.Expect(Scanner.RPAREN); P.opt_semi = true; } else { d = P.ParseSpec(exported, keyword); } P.Ecart(); return d; } // Function declarations // // func ident (params) // func ident (params) type // func ident (params) (results) // func (recv) ident (params) // func (recv) ident (params) type // func (recv) ident (params) (results) func (P *Parser) ParseFunctionDecl(exported bool) *AST.Decl { P.Trace("FunctionDecl"); d := AST.NewDecl(P.pos, Scanner.FUNC, exported); P.Expect(Scanner.FUNC); var recv *AST.Type; if P.tok == Scanner.LPAREN { pos := P.pos; recv = P.ParseParameters(true); if recv.nfields() != 1 { P.Error(pos, "must have exactly one receiver"); } } d.ident = P.ParseIdent(); d.typ = P.ParseFunctionType(); d.typ.key = recv; if P.tok == Scanner.LBRACE { P.scope_lev++; d.list = P.ParseBlock(); P.scope_lev--; } P.Ecart(); return d; } func (P *Parser) ParseExportDecl() *AST.Decl { P.Trace("ExportDecl"); d := AST.NewDecl(P.pos, Scanner.EXPORT, false); d.ident = P.ParseIdentList(); P.Ecart(); return d; } func (P *Parser) ParseDeclaration() *AST.Decl { P.Trace("Declaration"); indent := P.indent; d := AST.BadDecl; exported := false; if P.tok == Scanner.EXPORT { if P.scope_lev == 0 { exported = true; } else { P.Error(P.pos, "local declarations cannot be exported"); } P.Next(); } switch P.tok { case Scanner.CONST, Scanner.TYPE, Scanner.VAR: d = P.ParseDecl(exported, P.tok); case Scanner.FUNC: d = P.ParseFunctionDecl(exported); case Scanner.EXPORT: if exported { P.Error(P.pos, "cannot mark export declaration for export"); } P.Next(); d = P.ParseExportDecl(); default: if exported && (P.tok == Scanner.IDENT || P.tok == Scanner.LPAREN) { d = P.ParseExportDecl(); } else { P.Error(P.pos, "declaration expected"); P.Next(); // make progress } } if indent != P.indent { panic("imbalanced tracing code (Declaration)"); } P.Ecart(); return d; } // ---------------------------------------------------------------------------- // Program func (P *Parser) ParseProgram() *AST.Program { P.Trace("Program"); p := AST.NewProgram(P.pos); P.Expect(Scanner.PACKAGE); p.ident = P.ParseIdent(); p.decls = AST.NewList(); for P.tok == Scanner.IMPORT { p.decls.Add(P.ParseDecl(false, Scanner.IMPORT)); P.OptSemicolon(); } if !P.deps { for P.tok != Scanner.EOF { p.decls.Add(P.ParseDeclaration()); P.OptSemicolon(); } } p.comments = P.comments; P.Ecart(); return p; }