// Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime_test import ( "io" . "runtime" "runtime/debug" "testing" "unsafe" ) var errf error func errfn() error { return errf } func errfn1() error { return io.EOF } func BenchmarkIfaceCmp100(b *testing.B) { for i := 0; i < b.N; i++ { for j := 0; j < 100; j++ { if errfn() == io.EOF { b.Fatal("bad comparison") } } } } func BenchmarkIfaceCmpNil100(b *testing.B) { for i := 0; i < b.N; i++ { for j := 0; j < 100; j++ { if errfn1() == nil { b.Fatal("bad comparison") } } } } func BenchmarkDefer(b *testing.B) { for i := 0; i < b.N; i++ { defer1() } } func defer1() { defer func(x, y, z int) { if recover() != nil || x != 1 || y != 2 || z != 3 { panic("bad recover") } }(1, 2, 3) return } func BenchmarkDefer10(b *testing.B) { for i := 0; i < b.N/10; i++ { defer2() } } func defer2() { for i := 0; i < 10; i++ { defer func(x, y, z int) { if recover() != nil || x != 1 || y != 2 || z != 3 { panic("bad recover") } }(1, 2, 3) } } func BenchmarkDeferMany(b *testing.B) { for i := 0; i < b.N; i++ { defer func(x, y, z int) { if recover() != nil || x != 1 || y != 2 || z != 3 { panic("bad recover") } }(1, 2, 3) } } // golang.org/issue/7063 func TestStopCPUProfilingWithProfilerOff(t *testing.T) { SetCPUProfileRate(0) } // Addresses to test for faulting behavior. // This is less a test of SetPanicOnFault and more a check that // the operating system and the runtime can process these faults // correctly. That is, we're indirectly testing that without SetPanicOnFault // these would manage to turn into ordinary crashes. // Note that these are truncated on 32-bit systems, so the bottom 32 bits // of the larger addresses must themselves be invalid addresses. // We might get unlucky and the OS might have mapped one of these // addresses, but probably not: they're all in the first page, very high // adderesses that normally an OS would reserve for itself, or malformed // addresses. Even so, we might have to remove one or two on different // systems. We will see. var faultAddrs = []uint64{ // low addresses 0, 1, 0xfff, // high (kernel) addresses // or else malformed. 0xffffffffffffffff, 0xfffffffffffff001, 0xffffffffffff0001, 0xfffffffffff00001, 0xffffffffff000001, 0xfffffffff0000001, 0xffffffff00000001, 0xfffffff000000001, 0xffffff0000000001, 0xfffff00000000001, 0xffff000000000001, 0xfff0000000000001, 0xff00000000000001, 0xf000000000000001, 0x8000000000000001, } func TestSetPanicOnFault(t *testing.T) { old := debug.SetPanicOnFault(true) defer debug.SetPanicOnFault(old) nfault := 0 for _, addr := range faultAddrs { testSetPanicOnFault(t, uintptr(addr), &nfault) } if nfault == 0 { t.Fatalf("none of the addresses faulted") } } func testSetPanicOnFault(t *testing.T, addr uintptr, nfault *int) { if GOOS == "nacl" { t.Skip("nacl doesn't seem to fault on high addresses") } defer func() { if err := recover(); err != nil { *nfault++ } }() // The read should fault, except that sometimes we hit // addresses that have had C or kernel pages mapped there // readable by user code. So just log the content. // If no addresses fault, we'll fail the test. v := *(*byte)(unsafe.Pointer(addr)) t.Logf("addr %#x: %#x\n", addr, v) } func eqstring_generic(s1, s2 string) bool { if len(s1) != len(s2) { return false } // optimization in assembly versions: // if s1.str == s2.str { return true } for i := 0; i < len(s1); i++ { if s1[i] != s2[i] { return false } } return true } func TestEqString(t *testing.T) { // This isn't really an exhaustive test of eqstring, it's // just a convenient way of documenting (via eqstring_generic) // what eqstring does. s := []string{ "", "a", "c", "aaa", "ccc", "cccc"[:3], // same contents, different string "1234567890", } for _, s1 := range s { for _, s2 := range s { x := s1 == s2 y := eqstring_generic(s1, s2) if x != y { t.Errorf(`eqstring("%s","%s") = %t, want %t`, s1, s2, x, y) } } } } func TestTrailingZero(t *testing.T) { // make sure we add padding for structs with trailing zero-sized fields type T1 struct { n int32 z [0]byte } if unsafe.Sizeof(T1{}) != 8 { t.Errorf("sizeof(%#v)==%d, want 8", T1{}, unsafe.Sizeof(T1{})) } type T2 struct { n int64 z struct{} } if unsafe.Sizeof(T2{}) != 8+unsafe.Sizeof(Uintreg(0)) { t.Errorf("sizeof(%#v)==%d, want %d", T2{}, unsafe.Sizeof(T2{}), 8+unsafe.Sizeof(Uintreg(0))) } type T3 struct { n byte z [4]struct{} } if unsafe.Sizeof(T3{}) != 2 { t.Errorf("sizeof(%#v)==%d, want 2", T3{}, unsafe.Sizeof(T3{})) } // make sure padding can double for both zerosize and alignment type T4 struct { a int32 b int16 c int8 z struct{} } if unsafe.Sizeof(T4{}) != 8 { t.Errorf("sizeof(%#v)==%d, want 8", T4{}, unsafe.Sizeof(T4{})) } // make sure we don't pad a zero-sized thing type T5 struct { } if unsafe.Sizeof(T5{}) != 0 { t.Errorf("sizeof(%#v)==%d, want 0", T5{}, unsafe.Sizeof(T5{})) } } func TestBadOpen(t *testing.T) { if GOOS == "windows" || GOOS == "nacl" { t.Skip("skipping OS that doesn't have open/read/write/close") } // make sure we get the correct error code if open fails. Same for // read/write/close on the resulting -1 fd. See issue 10052. nonfile := []byte("/notreallyafile") fd := Open(&nonfile[0], 0, 0) if fd != -1 { t.Errorf("open(\"%s\")=%d, want -1", string(nonfile), fd) } var buf [32]byte r := Read(-1, unsafe.Pointer(&buf[0]), int32(len(buf))) if r != -1 { t.Errorf("read()=%d, want -1", r) } w := Write(^uintptr(0), unsafe.Pointer(&buf[0]), int32(len(buf))) if w != -1 { t.Errorf("write()=%d, want -1", w) } c := Close(-1) if c != -1 { t.Errorf("close()=%d, want -1", c) } } func TestAppendGrowth(t *testing.T) { var x []int64 check := func(want int) { if cap(x) != want { t.Errorf("len=%d, cap=%d, want cap=%d", len(x), cap(x), want) } } check(0) want := 1 for i := 1; i <= 100; i++ { x = append(x, 1) check(want) if i&(i-1) == 0 { want = 2 * i } } } var One = []int64{1} func TestAppendSliceGrowth(t *testing.T) { var x []int64 check := func(want int) { if cap(x) != want { t.Errorf("len=%d, cap=%d, want cap=%d", len(x), cap(x), want) } } check(0) want := 1 for i := 1; i <= 100; i++ { x = append(x, One...) check(want) if i&(i-1) == 0 { want = 2 * i } } }