// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package reflect import ( "math" "runtime" "unsafe" ) const ptrSize = uintptr(unsafe.Sizeof((*byte)(nil))) const cannotSet = "cannot set value obtained from unexported struct field" type addr unsafe.Pointer // TODO: This will have to go away when // the new gc goes in. func memmove(adst, asrc addr, n uintptr) { dst := uintptr(adst) src := uintptr(asrc) switch { case src < dst && src+n > dst: // byte copy backward // careful: i is unsigned for i := n; i > 0; { i-- *(*byte)(addr(dst + i)) = *(*byte)(addr(src + i)) } case (n|src|dst)&(ptrSize-1) != 0: // byte copy forward for i := uintptr(0); i < n; i++ { *(*byte)(addr(dst + i)) = *(*byte)(addr(src + i)) } default: // word copy forward for i := uintptr(0); i < n; i += ptrSize { *(*uintptr)(addr(dst + i)) = *(*uintptr)(addr(src + i)) } } } // Value is the reflection interface to a Go value. // // Not all methods apply to all kinds of values. Restrictions, // if any, are noted in the documentation for each method. // Use the Kind method to find out the kind of value before // calling kind-specific methods. Calling a method // inappropriate to the kind of type causes a run time panic. // // The zero Value represents no value. // Its IsValid method returns false, its Kind method returns Invalid, // its String method returns "", and all other methods panic. // Most functions and methods never return an invalid value. // If one does, its documentation states the conditions explicitly. type Value struct { Internal valueInterface } // TODO(rsc): This implementation of Value is a just a façade // in front of the old implementation, now called valueInterface. // A future CL will change it to a real implementation. // Changing the API is already a big enough step for one CL. // A ValueError occurs when a Value method is invoked on // a Value that does not support it. Such cases are documented // in the description of each method. type ValueError struct { Method string Kind Kind } func (e *ValueError) String() string { if e.Kind == 0 { return "reflect: call of " + e.Method + " on zero Value" } return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value" } // methodName returns the name of the calling method, // assumed to be two stack frames above. func methodName() string { pc, _, _, _ := runtime.Caller(2) f := runtime.FuncForPC(pc) if f == nil { return "unknown method" } return f.Name() } func (v Value) internal() valueInterface { vi := v.Internal if vi == nil { panic(&ValueError{methodName(), 0}) } return vi } func (v Value) panicIfNot(want Kind) valueInterface { vi := v.Internal if vi == nil { panic(&ValueError{methodName(), 0}) } if k := vi.Kind(); k != want { panic(&ValueError{methodName(), k}) } return vi } func (v Value) panicIfNots(wants []Kind) valueInterface { vi := v.Internal if vi == nil { panic(&ValueError{methodName(), 0}) } k := vi.Kind() for _, want := range wants { if k == want { return vi } } panic(&ValueError{methodName(), k}) } // Addr returns a pointer value representing the address of v. // It panics if CanAddr() returns false. // Addr is typically used to obtain a pointer to a struct field // or slice element in order to call a method that requires a // pointer receiver. func (v Value) Addr() Value { return v.internal().Addr() } // Bool returns v's underlying value. // It panics if v's kind is not Bool. func (v Value) Bool() bool { u := v.panicIfNot(Bool).(*boolValue) return u.Get() } // CanAddr returns true if the value's address can be obtained with Addr. // Such values are called addressable. A value is addressable if it is // an element of a slice, an element of an addressable array, // a field of an addressable struct, the result of dereferencing a pointer, // or the result of a call to NewValue, MakeChan, MakeMap, or Zero. // If CanAddr returns false, calling Addr will panic. func (v Value) CanAddr() bool { return v.internal().CanAddr() } // CanSet returns true if the value of v can be changed. // Values obtained by the use of unexported struct fields // can be read but not set. // If CanSet returns false, calling Set or any type-specific // setter (e.g., SetBool, SetInt64) will panic. func (v Value) CanSet() bool { return v.internal().CanSet() } // Call calls the function v with the input parameters in. // It panics if v's Kind is not Func. // It returns the output parameters as Values. func (v Value) Call(in []Value) []Value { return v.panicIfNot(Func).(*funcValue).Call(in) } var capKinds = []Kind{Array, Chan, Slice} type capper interface { Cap() int } // Cap returns v's capacity. // It panics if v's Kind is not Array, Chan, or Slice. func (v Value) Cap() int { return v.panicIfNots(capKinds).(capper).Cap() } // Close closes the channel v. // It panics if v's Kind is not Chan. func (v Value) Close() { v.panicIfNot(Chan).(*chanValue).Close() } var complexKinds = []Kind{Complex64, Complex128} // Complex returns v's underlying value, as a complex128. // It panics if v's Kind is not Complex64 or Complex128 func (v Value) Complex() complex128 { return v.panicIfNots(complexKinds).(*complexValue).Get() } var interfaceOrPtr = []Kind{Interface, Ptr} type elemer interface { Elem() Value } // Elem returns the value that the interface v contains // or that the pointer v points to. // It panics if v's Kind is not Interface or Ptr. // It returns the zero Value if v is nil. func (v Value) Elem() Value { return v.panicIfNots(interfaceOrPtr).(elemer).Elem() } // Field returns the i'th field of the struct v. // It panics if v's Kind is not Struct. func (v Value) Field(i int) Value { return v.panicIfNot(Struct).(*structValue).Field(i) } // FieldByIndex returns the nested field corresponding to index. // It panics if v's Kind is not struct. func (v Value) FieldByIndex(index []int) Value { return v.panicIfNot(Struct).(*structValue).FieldByIndex(index) } // FieldByName returns the struct field with the given name. // It returns the zero Value if no field was found. // It panics if v's Kind is not struct. func (v Value) FieldByName(name string) Value { return v.panicIfNot(Struct).(*structValue).FieldByName(name) } // FieldByNameFunc returns the struct field with a name // that satisfies the match function. // It panics if v's Kind is not struct. // It returns the zero Value if no field was found. func (v Value) FieldByNameFunc(match func(string) bool) Value { return v.panicIfNot(Struct).(*structValue).FieldByNameFunc(match) } var floatKinds = []Kind{Float32, Float64} // Float returns v's underlying value, as an float64. // It panics if v's Kind is not Float32 or Float64 func (v Value) Float() float64 { return v.panicIfNots(floatKinds).(*floatValue).Get() } var arrayOrSlice = []Kind{Array, Slice} // Index returns v's i'th element. // It panics if v's Kind is not Array or Slice. func (v Value) Index(i int) Value { return v.panicIfNots(arrayOrSlice).(arrayOrSliceValue).Elem(i) } var intKinds = []Kind{Int, Int8, Int16, Int32, Int64} // Int returns v's underlying value, as an int64. // It panics if v's Kind is not a sized or unsized Int kind. func (v Value) Int() int64 { return v.panicIfNots(intKinds).(*intValue).Get() } // Interface returns v's value as an interface{}. // If v is a method obtained by invoking Value.Method // (as opposed to Type.Method), Interface cannot return an // interface value, so it panics. func (v Value) Interface() interface{} { return v.internal().Interface() } // InterfaceData returns the interface v's value as a uintptr pair. // It panics if v's Kind is not Interface. func (v Value) InterfaceData() [2]uintptr { return v.panicIfNot(Interface).(*interfaceValue).Get() } var nilKinds = []Kind{Chan, Func, Interface, Map, Ptr, Slice} type isNiller interface { IsNil() bool } // IsNil returns true if v is a nil value. // It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice. func (v Value) IsNil() bool { return v.panicIfNots(nilKinds).(isNiller).IsNil() } // IsValid returns true if v represents a value. // It returns false if v is the zero Value. // If IsValid returns false, all other methods except String panic. // Most functions and methods never return an invalid value. // If one does, its documentation states the conditions explicitly. func (v Value) IsValid() bool { return v.Internal != nil } // Kind returns v's Kind. // If v is the zero Value (IsValid returns false), Kind returns Invalid. func (v Value) Kind() Kind { if v.Internal == nil { return Invalid } return v.internal().Kind() } var lenKinds = []Kind{Array, Chan, Map, Slice} type lenner interface { Len() int } // Len returns v's length. // It panics if v's Kind is not Array, Chan, Map, or Slice. func (v Value) Len() int { return v.panicIfNots(lenKinds).(lenner).Len() } // MapIndex returns the value associated with key in the map v. // It panics if v's Kind is not Map. // It returns the zero Value if key is not found in the map. func (v Value) MapIndex(key Value) Value { return v.panicIfNot(Map).(*mapValue).Elem(key) } // MapKeys returns a slice containing all the keys present in the map, // in unspecified order. // It panics if v's Kind is not Map. func (v Value) MapKeys() []Value { return v.panicIfNot(Map).(*mapValue).Keys() } // Method returns a function value corresponding to v's i'th method. // The arguments to a Call on the returned function should not include // a receiver; the returned function will always use v as the receiver. func (v Value) Method(i int) Value { return v.internal().Method(i) } // NumField returns the number of fields in the struct v. // It panics if v's Kind is not Struct. func (v Value) NumField() int { return v.panicIfNot(Struct).(*structValue).NumField() } // OverflowComplex returns true if the complex128 x cannot be represented by v's type. // It panics if v's Kind is not Complex64 or Complex128. func (v Value) OverflowComplex(x complex128) bool { return v.panicIfNots(complexKinds).(*complexValue).Overflow(x) } // OverflowFloat returns true if the float64 x cannot be represented by v's type. // It panics if v's Kind is not Float32 or Float64. func (v Value) OverflowFloat(x float64) bool { return v.panicIfNots(floatKinds).(*floatValue).Overflow(x) } // OverflowInt returns true if the int64 x cannot be represented by v's type. // It panics if v's Kind is not a sized or unsized Int kind. func (v Value) OverflowInt(x int64) bool { return v.panicIfNots(intKinds).(*intValue).Overflow(x) } // OverflowUint returns true if the uint64 x cannot be represented by v's type. // It panics if v's Kind is not a sized or unsized Uint kind. func (v Value) OverflowUint(x uint64) bool { return v.panicIfNots(uintKinds).(*uintValue).Overflow(x) } var pointerKinds = []Kind{Chan, Func, Map, Ptr, Slice, UnsafePointer} type uintptrGetter interface { Get() uintptr } // Pointer returns v's value as a uintptr. // It returns uintptr instead of unsafe.Pointer so that // code using reflect cannot obtain unsafe.Pointers // without importing the unsafe package explicitly. // It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer. func (v Value) Pointer() uintptr { return v.panicIfNots(pointerKinds).(uintptrGetter).Get() } // Recv receives and returns a value from the channel v. // It panics if v's Kind is not Chan. // The receive blocks until a value is ready. // The boolean value ok is true if the value x corresponds to a send // on the channel, false if it is a zero value received because the channel is closed. func (v Value) Recv() (x Value, ok bool) { return v.panicIfNot(Chan).(*chanValue).Recv() } // Send sends x on the channel v. // It panics if v's kind is not Chan or if x's type is not the same type as v's element type. func (v Value) Send(x Value) { v.panicIfNot(Chan).(*chanValue).Send(x) } // Set assigns x to the value v; x must have the same type as v. // It panics if CanSet() returns false or if x is the zero Value. func (v Value) Set(x Value) { x.internal() v.internal().SetValue(x) } // SetBool sets v's underlying value. // It panics if v's Kind is not Bool or if CanSet() is false. func (v Value) SetBool(x bool) { v.panicIfNot(Bool).(*boolValue).Set(x) } // SetComplex sets v's underlying value to x. // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false. func (v Value) SetComplex(x complex128) { v.panicIfNots(complexKinds).(*complexValue).Set(x) } // SetFloat sets v's underlying value to x. // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false. func (v Value) SetFloat(x float64) { v.panicIfNots(floatKinds).(*floatValue).Set(x) } // SetInt sets v's underlying value to x. // It panics if v's Kind is not a sized or unsized Int kind, or if CanSet() is false. func (v Value) SetInt(x int64) { v.panicIfNots(intKinds).(*intValue).Set(x) } // SetLen sets v's length to n. // It panics if v's Kind is not Slice. func (v Value) SetLen(n int) { v.panicIfNot(Slice).(*sliceValue).SetLen(n) } // SetMapIndex sets the value associated with key in the map v to val. // It panics if v's Kind is not Map. // If val is the zero Value, SetMapIndex deletes the key from the map. func (v Value) SetMapIndex(key, val Value) { v.panicIfNot(Map).(*mapValue).SetElem(key, val) } // SetUint sets v's underlying value to x. // It panics if v's Kind is not a sized or unsized Uint kind, or if CanSet() is false. func (v Value) SetUint(x uint64) { v.panicIfNots(uintKinds).(*uintValue).Set(x) } // SetPointer sets the unsafe.Pointer value v to x. // It panics if v's Kind is not UnsafePointer. func (v Value) SetPointer(x unsafe.Pointer) { v.panicIfNot(UnsafePointer).(*unsafePointerValue).Set(x) } // SetString sets v's underlying value to x. // It panics if v's Kind is not String or if CanSet() is false. func (v Value) SetString(x string) { v.panicIfNot(String).(*stringValue).Set(x) } // BUG(rsc): Value.Slice should allow slicing arrays. // Slice returns a slice of v. // It panics if v's Kind is not Slice. func (v Value) Slice(beg, end int) Value { return v.panicIfNot(Slice).(*sliceValue).Slice(beg, end) } // String returns the string v's underlying value, as a string. // String is a special case because of Go's String method convention. // Unlike the other getters, it does not panic if v's Kind is not String. // Instead, it returns a string of the form "" where T is v's type. func (v Value) String() string { vi := v.Internal if vi == nil { return "" } if vi.Kind() == String { return vi.(*stringValue).Get() } return "<" + vi.Type().String() + " Value>" } // TryRecv attempts to receive a value from the channel v but will not block. // It panics if v's Kind is not Chan. // If the receive cannot finish without blocking, x is the zero Value. // The boolean ok is true if the value x corresponds to a send // on the channel, false if it is a zero value received because the channel is closed. func (v Value) TryRecv() (x Value, ok bool) { return v.panicIfNot(Chan).(*chanValue).TryRecv() } // TrySend attempts to send x on the channel v but will not block. // It panics if v's Kind is not Chan. // It returns true if the value was sent, false otherwise. func (v Value) TrySend(x Value) bool { return v.panicIfNot(Chan).(*chanValue).TrySend(x) } // Type returns v's type. func (v Value) Type() Type { return v.internal().Type() } var uintKinds = []Kind{Uint, Uint8, Uint16, Uint32, Uint64, Uintptr} // Uint returns v's underlying value, as a uint64. // It panics if v's Kind is not a sized or unsized Uint kind. func (v Value) Uint() uint64 { return v.panicIfNots(uintKinds).(*uintValue).Get() } // UnsafeAddr returns a pointer to v's data. // It is for advanced clients that also import the "unsafe" package. func (v Value) UnsafeAddr() uintptr { return v.internal().UnsafeAddr() } // valueInterface is the common interface to reflection values. // The implementations of Value (e.g., arrayValue, structValue) // have additional type-specific methods. type valueInterface interface { // Type returns the value's type. Type() Type // Interface returns the value as an interface{}. Interface() interface{} // CanSet returns true if the value can be changed. // Values obtained by the use of non-exported struct fields // can be used in Get but not Set. // If CanSet returns false, calling the type-specific Set will panic. CanSet() bool // SetValue assigns v to the value; v must have the same type as the value. SetValue(v Value) // CanAddr returns true if the value's address can be obtained with Addr. // Such values are called addressable. A value is addressable if it is // an element of a slice, an element of an addressable array, // a field of an addressable struct, the result of dereferencing a pointer, // or the result of a call to NewValue, MakeChan, MakeMap, or Zero. // If CanAddr returns false, calling Addr will panic. CanAddr() bool // Addr returns the address of the value. // If the value is not addressable, Addr panics. // Addr is typically used to obtain a pointer to a struct field or slice element // in order to call a method that requires a pointer receiver. Addr() Value // UnsafeAddr returns a pointer to the underlying data. // It is for advanced clients that also import the "unsafe" package. UnsafeAddr() uintptr // Method returns a funcValue corresponding to the value's i'th method. // The arguments to a Call on the returned funcValue // should not include a receiver; the funcValue will use // the value as the receiver. Method(i int) Value Kind() Kind getAddr() addr } // flags for value const ( canSet uint32 = 1 << iota // can set value (write to *v.addr) canAddr // can take address of value canStore // can store through value (write to **v.addr) ) // value is the common implementation of most values. // It is embedded in other, public struct types, but always // with a unique tag like "uint" or "float" so that the client cannot // convert from, say, *uintValue to *floatValue. type value struct { typ Type addr addr flag uint32 } func (v *value) Type() Type { return v.typ } func (v *value) Kind() Kind { return v.typ.Kind() } func (v *value) Addr() Value { if !v.CanAddr() { panic("reflect: cannot take address of value") } a := v.addr flag := canSet if v.CanSet() { flag |= canStore } // We could safely set canAddr here too - // the caller would get the address of a - // but it doesn't match the Go model. // The language doesn't let you say &&v. return newValue(PtrTo(v.typ), addr(&a), flag) } func (v *value) UnsafeAddr() uintptr { return uintptr(v.addr) } func (v *value) getAddr() addr { return v.addr } func (v *value) Interface() interface{} { typ := v.typ if typ.Kind() == Interface { // There are two different representations of interface values, // one if the interface type has methods and one if it doesn't. // These two representations require different expressions // to extract correctly. if typ.NumMethod() == 0 { // Extract as interface value without methods. return *(*interface{})(v.addr) } // Extract from v.addr as interface value with methods. return *(*interface { m() })(v.addr) } return unsafe.Unreflect(v.typ, unsafe.Pointer(v.addr)) } func (v *value) CanSet() bool { return v.flag&canSet != 0 } func (v *value) CanAddr() bool { return v.flag&canAddr != 0 } /* * basic types */ // boolValue represents a bool value. type boolValue struct { value "bool" } // Get returns the underlying bool value. func (v *boolValue) Get() bool { return *(*bool)(v.addr) } // Set sets v to the value x. func (v *boolValue) Set(x bool) { if !v.CanSet() { panic(cannotSet) } *(*bool)(v.addr) = x } // Set sets v to the value x. func (v *boolValue) SetValue(x Value) { v.Set(x.Bool()) } // floatValue represents a float value. type floatValue struct { value "float" } // Get returns the underlying int value. func (v *floatValue) Get() float64 { switch v.typ.Kind() { case Float32: return float64(*(*float32)(v.addr)) case Float64: return *(*float64)(v.addr) } panic("reflect: invalid float kind") } // Set sets v to the value x. func (v *floatValue) Set(x float64) { if !v.CanSet() { panic(cannotSet) } switch v.typ.Kind() { default: panic("reflect: invalid float kind") case Float32: *(*float32)(v.addr) = float32(x) case Float64: *(*float64)(v.addr) = x } } // Overflow returns true if x cannot be represented by the type of v. func (v *floatValue) Overflow(x float64) bool { if v.typ.Size() == 8 { return false } if x < 0 { x = -x } return math.MaxFloat32 < x && x <= math.MaxFloat64 } // Set sets v to the value x. func (v *floatValue) SetValue(x Value) { v.Set(x.Float()) } // complexValue represents a complex value. type complexValue struct { value "complex" } // Get returns the underlying complex value. func (v *complexValue) Get() complex128 { switch v.typ.Kind() { case Complex64: return complex128(*(*complex64)(v.addr)) case Complex128: return *(*complex128)(v.addr) } panic("reflect: invalid complex kind") } // Set sets v to the value x. func (v *complexValue) Set(x complex128) { if !v.CanSet() { panic(cannotSet) } switch v.typ.Kind() { default: panic("reflect: invalid complex kind") case Complex64: *(*complex64)(v.addr) = complex64(x) case Complex128: *(*complex128)(v.addr) = x } } // How did we forget this one? func (v *complexValue) Overflow(x complex128) bool { if v.typ.Size() == 16 { return false } r := real(x) i := imag(x) if r < 0 { r = -r } if i < 0 { i = -i } return math.MaxFloat32 <= r && r <= math.MaxFloat64 || math.MaxFloat32 <= i && i <= math.MaxFloat64 } // Set sets v to the value x. func (v *complexValue) SetValue(x Value) { v.Set(x.Complex()) } // intValue represents an int value. type intValue struct { value "int" } // Get returns the underlying int value. func (v *intValue) Get() int64 { switch v.typ.Kind() { case Int: return int64(*(*int)(v.addr)) case Int8: return int64(*(*int8)(v.addr)) case Int16: return int64(*(*int16)(v.addr)) case Int32: return int64(*(*int32)(v.addr)) case Int64: return *(*int64)(v.addr) } panic("reflect: invalid int kind") } // Set sets v to the value x. func (v *intValue) Set(x int64) { if !v.CanSet() { panic(cannotSet) } switch v.typ.Kind() { default: panic("reflect: invalid int kind") case Int: *(*int)(v.addr) = int(x) case Int8: *(*int8)(v.addr) = int8(x) case Int16: *(*int16)(v.addr) = int16(x) case Int32: *(*int32)(v.addr) = int32(x) case Int64: *(*int64)(v.addr) = x } } // Set sets v to the value x. func (v *intValue) SetValue(x Value) { v.Set(x.Int()) } // Overflow returns true if x cannot be represented by the type of v. func (v *intValue) Overflow(x int64) bool { bitSize := uint(v.typ.Bits()) trunc := (x << (64 - bitSize)) >> (64 - bitSize) return x != trunc } // StringHeader is the runtime representation of a string. type StringHeader struct { Data uintptr Len int } // stringValue represents a string value. type stringValue struct { value "string" } // Get returns the underlying string value. func (v *stringValue) Get() string { return *(*string)(v.addr) } // Set sets v to the value x. func (v *stringValue) Set(x string) { if !v.CanSet() { panic(cannotSet) } *(*string)(v.addr) = x } // Set sets v to the value x. func (v *stringValue) SetValue(x Value) { // Do the kind check explicitly, because x.String() does not. v.Set(x.panicIfNot(String).(*stringValue).Get()) } // uintValue represents a uint value. type uintValue struct { value "uint" } // Get returns the underlying uuint value. func (v *uintValue) Get() uint64 { switch v.typ.Kind() { case Uint: return uint64(*(*uint)(v.addr)) case Uint8: return uint64(*(*uint8)(v.addr)) case Uint16: return uint64(*(*uint16)(v.addr)) case Uint32: return uint64(*(*uint32)(v.addr)) case Uint64: return *(*uint64)(v.addr) case Uintptr: return uint64(*(*uintptr)(v.addr)) } panic("reflect: invalid uint kind") } // Set sets v to the value x. func (v *uintValue) Set(x uint64) { if !v.CanSet() { panic(cannotSet) } switch v.typ.Kind() { default: panic("reflect: invalid uint kind") case Uint: *(*uint)(v.addr) = uint(x) case Uint8: *(*uint8)(v.addr) = uint8(x) case Uint16: *(*uint16)(v.addr) = uint16(x) case Uint32: *(*uint32)(v.addr) = uint32(x) case Uint64: *(*uint64)(v.addr) = x case Uintptr: *(*uintptr)(v.addr) = uintptr(x) } } // Overflow returns true if x cannot be represented by the type of v. func (v *uintValue) Overflow(x uint64) bool { bitSize := uint(v.typ.Bits()) trunc := (x << (64 - bitSize)) >> (64 - bitSize) return x != trunc } // Set sets v to the value x. func (v *uintValue) SetValue(x Value) { v.Set(x.Uint()) } // unsafePointerValue represents an unsafe.Pointer value. type unsafePointerValue struct { value "unsafe.Pointer" } // Get returns the underlying uintptr value. // Get returns uintptr, not unsafe.Pointer, so that // programs that do not import "unsafe" cannot // obtain a value of unsafe.Pointer type from "reflect". func (v *unsafePointerValue) Get() uintptr { return uintptr(*(*unsafe.Pointer)(v.addr)) } // Set sets v to the value x. func (v *unsafePointerValue) Set(x unsafe.Pointer) { if !v.CanSet() { panic(cannotSet) } *(*unsafe.Pointer)(v.addr) = x } // Set sets v to the value x. func (v *unsafePointerValue) SetValue(x Value) { // Do the kind check explicitly, because x.UnsafePointer // applies to more than just the UnsafePointer Kind. v.Set(unsafe.Pointer(x.panicIfNot(UnsafePointer).(*unsafePointerValue).Get())) } func typesMustMatch(t1, t2 Type) { if t1 != t2 { panic("type mismatch: " + t1.String() + " != " + t2.String()) } } /* * array */ // ArrayOrSliceValue is the common interface // implemented by both arrayValue and sliceValue. type arrayOrSliceValue interface { valueInterface Len() int Cap() int Elem(i int) Value addr() addr } // grow grows the slice s so that it can hold extra more values, allocating // more capacity if needed. It also returns the old and new slice lengths. func grow(s Value, extra int) (Value, int, int) { i0 := s.Len() i1 := i0 + extra if i1 < i0 { panic("append: slice overflow") } m := s.Cap() if i1 <= m { return s.Slice(0, i1), i0, i1 } if m == 0 { m = extra } else { for m < i1 { if i0 < 1024 { m += m } else { m += m / 4 } } } t := MakeSlice(s.Type(), i1, m) Copy(t, s) return t, i0, i1 } // Append appends the values x to a slice s and returns the resulting slice. // Each x must have the same type as s' element type. func Append(s Value, x ...Value) Value { s, i0, i1 := grow(s, len(x)) sa := s.panicIfNot(Slice).(*sliceValue) for i, j := i0, 0; i < i1; i, j = i+1, j+1 { sa.Elem(i).Set(x[j]) } return s } // AppendSlice appends a slice t to a slice s and returns the resulting slice. // The slices s and t must have the same element type. func AppendSlice(s, t Value) Value { s, i0, i1 := grow(s, t.Len()) Copy(s.Slice(i0, i1), t) return s } // Copy copies the contents of src into dst until either // dst has been filled or src has been exhausted. // It returns the number of elements copied. // Dst and src each must be a slice or array, and they // must have the same element type. func Copy(dst, src Value) int { // TODO: This will have to move into the runtime // once the real gc goes in. de := dst.Type().Elem() se := src.Type().Elem() typesMustMatch(de, se) n := dst.Len() if xn := src.Len(); n > xn { n = xn } memmove(dst.panicIfNots(arrayOrSlice).(arrayOrSliceValue).addr(), src.panicIfNots(arrayOrSlice).(arrayOrSliceValue).addr(), uintptr(n)*de.Size()) return n } // An arrayValue represents an array. type arrayValue struct { value "array" } // Len returns the length of the array. func (v *arrayValue) Len() int { return v.typ.Len() } // Cap returns the capacity of the array (equal to Len()). func (v *arrayValue) Cap() int { return v.typ.Len() } // addr returns the base address of the data in the array. func (v *arrayValue) addr() addr { return v.value.addr } // Set assigns x to v. // The new value x must have the same type as v. func (v *arrayValue) Set(x *arrayValue) { if !v.CanSet() { panic(cannotSet) } typesMustMatch(v.typ, x.typ) Copy(Value{v}, Value{x}) } // Set sets v to the value x. func (v *arrayValue) SetValue(x Value) { v.Set(x.panicIfNot(Array).(*arrayValue)) } // Elem returns the i'th element of v. func (v *arrayValue) Elem(i int) Value { typ := v.typ.Elem() n := v.Len() if i < 0 || i >= n { panic("array index out of bounds") } p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size()) return newValue(typ, p, v.flag) } /* * slice */ // runtime representation of slice type SliceHeader struct { Data uintptr Len int Cap int } // A sliceValue represents a slice. type sliceValue struct { value "slice" } func (v *sliceValue) slice() *SliceHeader { return (*SliceHeader)(v.value.addr) } // IsNil returns whether v is a nil slice. func (v *sliceValue) IsNil() bool { return v.slice().Data == 0 } // Len returns the length of the slice. func (v *sliceValue) Len() int { return int(v.slice().Len) } // Cap returns the capacity of the slice. func (v *sliceValue) Cap() int { return int(v.slice().Cap) } // addr returns the base address of the data in the slice. func (v *sliceValue) addr() addr { return addr(v.slice().Data) } // SetLen changes the length of v. // The new length n must be between 0 and the capacity, inclusive. func (v *sliceValue) SetLen(n int) { s := v.slice() if n < 0 || n > int(s.Cap) { panic("reflect: slice length out of range in SetLen") } s.Len = n } // Set assigns x to v. // The new value x must have the same type as v. func (v *sliceValue) Set(x *sliceValue) { if !v.CanSet() { panic(cannotSet) } typesMustMatch(v.typ, x.typ) *v.slice() = *x.slice() } // Set sets v to the value x. func (v *sliceValue) SetValue(x Value) { v.Set(x.panicIfNot(Slice).(*sliceValue)) } // Get returns the uintptr address of the v.Cap()'th element. This gives // the same result for all slices of the same array. // It is mainly useful for printing. func (v *sliceValue) Get() uintptr { typ := v.typ return uintptr(v.addr()) + uintptr(v.Cap())*typ.Elem().Size() } // Slice returns a sub-slice of the slice v. func (v *sliceValue) Slice(beg, end int) Value { cap := v.Cap() if beg < 0 || end < beg || end > cap { panic("slice index out of bounds") } typ := v.typ s := new(SliceHeader) s.Data = uintptr(v.addr()) + uintptr(beg)*typ.Elem().Size() s.Len = end - beg s.Cap = cap - beg // Like the result of Addr, we treat Slice as an // unaddressable temporary, so don't set canAddr. flag := canSet if v.flag&canStore != 0 { flag |= canStore } return newValue(typ, addr(s), flag) } // Elem returns the i'th element of v. func (v *sliceValue) Elem(i int) Value { typ := v.typ.Elem() n := v.Len() if i < 0 || i >= n { panic("reflect: slice index out of range") } p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size()) flag := canAddr if v.flag&canStore != 0 { flag |= canSet | canStore } return newValue(typ, p, flag) } // MakeSlice creates a new zero-initialized slice value // for the specified slice type, length, and capacity. func MakeSlice(typ Type, len, cap int) Value { if typ.Kind() != Slice { panic("reflect: MakeSlice of non-slice type") } s := &SliceHeader{ Data: uintptr(unsafe.NewArray(typ.Elem(), cap)), Len: len, Cap: cap, } return newValue(typ, addr(s), canAddr|canSet|canStore) } /* * chan */ // A chanValue represents a chan. type chanValue struct { value "chan" } // IsNil returns whether v is a nil channel. func (v *chanValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } // Set assigns x to v. // The new value x must have the same type as v. func (v *chanValue) Set(x *chanValue) { if !v.CanSet() { panic(cannotSet) } typesMustMatch(v.typ, x.typ) *(*uintptr)(v.addr) = *(*uintptr)(x.addr) } // Set sets v to the value x. func (v *chanValue) SetValue(x Value) { v.Set(x.panicIfNot(Chan).(*chanValue)) } // Get returns the uintptr value of v. // It is mainly useful for printing. func (v *chanValue) Get() uintptr { return *(*uintptr)(v.addr) } // implemented in ../pkg/runtime/reflect.cgo func makechan(typ *runtime.ChanType, size uint32) (ch *byte) func chansend(ch, val *byte, selected *bool) func chanrecv(ch, val *byte, selected *bool, ok *bool) func chanclose(ch *byte) func chanlen(ch *byte) int32 func chancap(ch *byte) int32 // Close closes the channel. func (v *chanValue) Close() { ch := *(**byte)(v.addr) chanclose(ch) } func (v *chanValue) Len() int { ch := *(**byte)(v.addr) return int(chanlen(ch)) } func (v *chanValue) Cap() int { ch := *(**byte)(v.addr) return int(chancap(ch)) } // internal send; non-blocking if selected != nil func (v *chanValue) send(x Value, selected *bool) { t := v.Type() if t.ChanDir()&SendDir == 0 { panic("send on recv-only channel") } typesMustMatch(t.Elem(), x.Type()) ch := *(**byte)(v.addr) chansend(ch, (*byte)(x.internal().getAddr()), selected) } // internal recv; non-blocking if selected != nil func (v *chanValue) recv(selected *bool) (Value, bool) { t := v.Type() if t.ChanDir()&RecvDir == 0 { panic("recv on send-only channel") } ch := *(**byte)(v.addr) x := Zero(t.Elem()) var ok bool chanrecv(ch, (*byte)(x.internal().getAddr()), selected, &ok) return x, ok } // Send sends x on the channel v. func (v *chanValue) Send(x Value) { v.send(x, nil) } // Recv receives and returns a value from the channel v. // The receive blocks until a value is ready. // The boolean value ok is true if the value x corresponds to a send // on the channel, false if it is a zero value received because the channel is closed. func (v *chanValue) Recv() (x Value, ok bool) { return v.recv(nil) } // TrySend attempts to sends x on the channel v but will not block. // It returns true if the value was sent, false otherwise. func (v *chanValue) TrySend(x Value) bool { var selected bool v.send(x, &selected) return selected } // TryRecv attempts to receive a value from the channel v but will not block. // If the receive cannot finish without blocking, TryRecv instead returns x == nil. // If the receive can finish without blocking, TryRecv returns x != nil. // The boolean value ok is true if the value x corresponds to a send // on the channel, false if it is a zero value received because the channel is closed. func (v *chanValue) TryRecv() (x Value, ok bool) { var selected bool x, ok = v.recv(&selected) if !selected { return Value{}, false } return x, ok } // MakeChan creates a new channel with the specified type and buffer size. func MakeChan(typ Type, buffer int) Value { if typ.Kind() != Chan { panic("reflect: MakeChan of non-chan type") } if buffer < 0 { panic("MakeChan: negative buffer size") } if typ.ChanDir() != BothDir { panic("MakeChan: unidirectional channel type") } v := Zero(typ) ch := v.panicIfNot(Chan).(*chanValue) *(**byte)(ch.addr) = makechan((*runtime.ChanType)(unsafe.Pointer(typ.(*commonType))), uint32(buffer)) return v } /* * func */ // A funcValue represents a function value. type funcValue struct { value "func" first *value isInterface bool } // IsNil returns whether v is a nil function. func (v *funcValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } // Get returns the uintptr value of v. // It is mainly useful for printing. func (v *funcValue) Get() uintptr { return *(*uintptr)(v.addr) } // Set assigns x to v. // The new value x must have the same type as v. func (v *funcValue) Set(x *funcValue) { if !v.CanSet() { panic(cannotSet) } typesMustMatch(v.typ, x.typ) *(*uintptr)(v.addr) = *(*uintptr)(x.addr) } // Set sets v to the value x. func (v *funcValue) SetValue(x Value) { v.Set(x.panicIfNot(Func).(*funcValue)) } // Method returns a funcValue corresponding to v's i'th method. // The arguments to a Call on the returned funcValue // should not include a receiver; the funcValue will use v // as the receiver. func (v *value) Method(i int) Value { t := v.Type().uncommon() if t == nil || i < 0 || i >= len(t.methods) { panic("reflect: Method index out of range") } p := &t.methods[i] fn := p.tfn fv := &funcValue{value: value{toType(p.typ), addr(&fn), 0}, first: v, isInterface: false} return Value{fv} } // implemented in ../pkg/runtime/*/asm.s func call(fn, arg *byte, n uint32) type tiny struct { b byte } // Interface returns the fv as an interface value. // If fv is a method obtained by invoking Value.Method // (as opposed to Type.Method), Interface cannot return an // interface value, so it panics. func (fv *funcValue) Interface() interface{} { if fv.first != nil { panic("funcValue: cannot create interface value for method with bound receiver") } return fv.value.Interface() } // Call calls the function fv with input parameters in. // It returns the function's output parameters as Values. func (fv *funcValue) Call(in []Value) []Value { t := fv.Type() nin := len(in) if fv.first != nil && !fv.isInterface { nin++ } if nin != t.NumIn() { panic("funcValue: wrong argument count") } nout := t.NumOut() // Compute arg size & allocate. // This computation is 6g/8g-dependent // and probably wrong for gccgo, but so // is most of this function. size := uintptr(0) if fv.isInterface { // extra word for interface value size += ptrSize } for i := 0; i < nin; i++ { tv := t.In(i) a := uintptr(tv.Align()) size = (size + a - 1) &^ (a - 1) size += tv.Size() } size = (size + ptrSize - 1) &^ (ptrSize - 1) for i := 0; i < nout; i++ { tv := t.Out(i) a := uintptr(tv.Align()) size = (size + a - 1) &^ (a - 1) size += tv.Size() } // size must be > 0 in order for &args[0] to be valid. // the argument copying is going to round it up to // a multiple of ptrSize anyway, so make it ptrSize to begin with. if size < ptrSize { size = ptrSize } // round to pointer size size = (size + ptrSize - 1) &^ (ptrSize - 1) // Copy into args. // // TODO(rsc): revisit when reference counting happens. // The values are holding up the in references for us, // but something must be done for the out references. // For now make everything look like a pointer by pretending // to allocate a []*int. args := make([]*int, size/ptrSize) ptr := uintptr(unsafe.Pointer(&args[0])) off := uintptr(0) delta := 0 if v := fv.first; v != nil { // Hard-wired first argument. if fv.isInterface { // v is a single uninterpreted word memmove(addr(ptr), v.getAddr(), ptrSize) off = ptrSize } else { // v is a real value tv := v.Type() typesMustMatch(t.In(0), tv) n := tv.Size() memmove(addr(ptr), v.getAddr(), n) off = n delta = 1 } } for i, v := range in { tv := v.Type() typesMustMatch(t.In(i+delta), tv) a := uintptr(tv.Align()) off = (off + a - 1) &^ (a - 1) n := tv.Size() memmove(addr(ptr+off), v.internal().getAddr(), n) off += n } off = (off + ptrSize - 1) &^ (ptrSize - 1) // Call call(*(**byte)(fv.addr), (*byte)(addr(ptr)), uint32(size)) // Copy return values out of args. // // TODO(rsc): revisit like above. ret := make([]Value, nout) for i := 0; i < nout; i++ { tv := t.Out(i) a := uintptr(tv.Align()) off = (off + a - 1) &^ (a - 1) v := Zero(tv) n := tv.Size() memmove(v.internal().getAddr(), addr(ptr+off), n) ret[i] = v off += n } return ret } /* * interface */ // An interfaceValue represents an interface value. type interfaceValue struct { value "interface" } // IsNil returns whether v is a nil interface value. func (v *interfaceValue) IsNil() bool { return v.Interface() == nil } // No single uinptr Get because v.Interface() is available. // Get returns the two words that represent an interface in the runtime. // Those words are useful only when playing unsafe games. func (v *interfaceValue) Get() [2]uintptr { return *(*[2]uintptr)(v.addr) } // Elem returns the concrete value stored in the interface value v. func (v *interfaceValue) Elem() Value { return NewValue(v.Interface()) } // ../runtime/reflect.cgo func setiface(typ *interfaceType, x *interface{}, addr addr) // Set assigns x to v. func (v *interfaceValue) Set(x Value) { i := x.Interface() if !v.CanSet() { panic(cannotSet) } // Two different representations; see comment in Get. // Empty interface is easy. t := (*interfaceType)(unsafe.Pointer(v.typ.(*commonType))) if t.NumMethod() == 0 { *(*interface{})(v.addr) = i return } // Non-empty interface requires a runtime check. setiface(t, &i, v.addr) } // Set sets v to the value x. func (v *interfaceValue) SetValue(x Value) { v.Set(x) } // Method returns a funcValue corresponding to v's i'th method. // The arguments to a Call on the returned funcValue // should not include a receiver; the funcValue will use v // as the receiver. func (v *interfaceValue) Method(i int) Value { t := (*interfaceType)(unsafe.Pointer(v.Type().(*commonType))) if t == nil || i < 0 || i >= len(t.methods) { panic("reflect: Method index out of range") } p := &t.methods[i] // Interface is two words: itable, data. tab := *(**runtime.Itable)(v.addr) data := &value{Typeof((*byte)(nil)), addr(uintptr(v.addr) + ptrSize), 0} // Function pointer is at p.perm in the table. fn := tab.Fn[i] fv := &funcValue{value: value{toType(p.typ), addr(&fn), 0}, first: data, isInterface: true} return Value{fv} } /* * map */ // A mapValue represents a map value. type mapValue struct { value "map" } // IsNil returns whether v is a nil map value. func (v *mapValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } // Set assigns x to v. // The new value x must have the same type as v. func (v *mapValue) Set(x *mapValue) { if !v.CanSet() { panic(cannotSet) } if x == nil { *(**uintptr)(v.addr) = nil return } typesMustMatch(v.typ, x.typ) *(*uintptr)(v.addr) = *(*uintptr)(x.addr) } // Set sets v to the value x. func (v *mapValue) SetValue(x Value) { v.Set(x.panicIfNot(Map).(*mapValue)) } // Get returns the uintptr value of v. // It is mainly useful for printing. func (v *mapValue) Get() uintptr { return *(*uintptr)(v.addr) } // implemented in ../pkg/runtime/reflect.cgo func mapaccess(m, key, val *byte) bool func mapassign(m, key, val *byte) func maplen(m *byte) int32 func mapiterinit(m *byte) *byte func mapiternext(it *byte) func mapiterkey(it *byte, key *byte) bool func makemap(t *runtime.MapType) *byte // Elem returns the value associated with key in the map v. // It returns nil if key is not found in the map. func (v *mapValue) Elem(key Value) Value { t := v.Type() typesMustMatch(t.Key(), key.Type()) m := *(**byte)(v.addr) if m == nil { return Value{} } newval := Zero(t.Elem()) if !mapaccess(m, (*byte)(key.internal().getAddr()), (*byte)(newval.internal().getAddr())) { return Value{} } return newval } // SetElem sets the value associated with key in the map v to val. // If val is nil, Put deletes the key from map. func (v *mapValue) SetElem(key, val Value) { t := v.Type() typesMustMatch(t.Key(), key.Type()) var vaddr *byte if val.IsValid() { typesMustMatch(t.Elem(), val.Type()) vaddr = (*byte)(val.internal().getAddr()) } m := *(**byte)(v.addr) mapassign(m, (*byte)(key.internal().getAddr()), vaddr) } // Len returns the number of keys in the map v. func (v *mapValue) Len() int { m := *(**byte)(v.addr) if m == nil { return 0 } return int(maplen(m)) } // Keys returns a slice containing all the keys present in the map, // in unspecified order. func (v *mapValue) Keys() []Value { tk := v.Type().Key() m := *(**byte)(v.addr) mlen := int32(0) if m != nil { mlen = maplen(m) } it := mapiterinit(m) a := make([]Value, mlen) var i int for i = 0; i < len(a); i++ { k := Zero(tk) if !mapiterkey(it, (*byte)(k.internal().getAddr())) { break } a[i] = k mapiternext(it) } return a[0:i] } // MakeMap creates a new map of the specified type. func MakeMap(typ Type) Value { if typ.Kind() != Map { panic("reflect: MakeMap of non-map type") } v := Zero(typ) m := v.panicIfNot(Map).(*mapValue) *(**byte)(m.addr) = makemap((*runtime.MapType)(unsafe.Pointer(typ.(*commonType)))) return v } /* * ptr */ // A ptrValue represents a pointer. type ptrValue struct { value "ptr" } // IsNil returns whether v is a nil pointer. func (v *ptrValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } // Get returns the uintptr value of v. // It is mainly useful for printing. func (v *ptrValue) Get() uintptr { return *(*uintptr)(v.addr) } // Set assigns x to v. // The new value x must have the same type as v, and x.Elem().CanSet() must be true. func (v *ptrValue) Set(x *ptrValue) { if x == nil { *(**uintptr)(v.addr) = nil return } if !v.CanSet() { panic(cannotSet) } if x.flag&canStore == 0 { panic("cannot copy pointer obtained from unexported struct field") } typesMustMatch(v.typ, x.typ) // TODO: This will have to move into the runtime // once the new gc goes in *(*uintptr)(v.addr) = *(*uintptr)(x.addr) } // Set sets v to the value x. func (v *ptrValue) SetValue(x Value) { v.Set(x.panicIfNot(Ptr).(*ptrValue)) } // PointTo changes v to point to x. // If x is a nil Value, PointTo sets v to nil. func (v *ptrValue) PointTo(x Value) { if !x.IsValid() { *(**uintptr)(v.addr) = nil return } if !x.CanSet() { panic("cannot set x; cannot point to x") } typesMustMatch(v.typ.Elem(), x.Type()) // TODO: This will have to move into the runtime // once the new gc goes in. *(*uintptr)(v.addr) = x.UnsafeAddr() } // Elem returns the value that v points to. // If v is a nil pointer, Elem returns a nil Value. func (v *ptrValue) Elem() Value { if v.IsNil() { return Value{} } flag := canAddr if v.flag&canStore != 0 { flag |= canSet | canStore } return newValue(v.typ.Elem(), *(*addr)(v.addr), flag) } // Indirect returns the value that v points to. // If v is a nil pointer, Indirect returns a nil Value. // If v is not a pointer, Indirect returns v. func Indirect(v Value) Value { if v.Kind() != Ptr { return v } return v.panicIfNot(Ptr).(*ptrValue).Elem() } /* * struct */ // A structValue represents a struct value. type structValue struct { value "struct" } // Set assigns x to v. // The new value x must have the same type as v. func (v *structValue) Set(x *structValue) { // TODO: This will have to move into the runtime // once the gc goes in. if !v.CanSet() { panic(cannotSet) } typesMustMatch(v.typ, x.typ) memmove(v.addr, x.addr, v.typ.Size()) } // Set sets v to the value x. func (v *structValue) SetValue(x Value) { v.Set(x.panicIfNot(Struct).(*structValue)) } // Field returns the i'th field of the struct. func (v *structValue) Field(i int) Value { t := v.typ if i < 0 || i >= t.NumField() { panic("reflect: Field index out of range") } f := t.Field(i) flag := v.flag if f.PkgPath != "" { // unexported field flag &^= canSet | canStore } return newValue(f.Type, addr(uintptr(v.addr)+f.Offset), flag) } // FieldByIndex returns the nested field corresponding to index. func (t *structValue) FieldByIndex(index []int) (v Value) { v = Value{t} for i, x := range index { if i > 0 { if v.Kind() == Ptr { v = v.Elem() } if v.Kind() != Struct { return Value{} } } v = v.Field(x) } return } // FieldByName returns the struct field with the given name. // The result is nil if no field was found. func (t *structValue) FieldByName(name string) Value { if f, ok := t.Type().FieldByName(name); ok { return t.FieldByIndex(f.Index) } return Value{} } // FieldByNameFunc returns the struct field with a name that satisfies the // match function. // The result is nil if no field was found. func (t *structValue) FieldByNameFunc(match func(string) bool) Value { if f, ok := t.Type().FieldByNameFunc(match); ok { return t.FieldByIndex(f.Index) } return Value{} } // NumField returns the number of fields in the struct. func (v *structValue) NumField() int { return v.typ.NumField() } /* * constructors */ // NewValue returns a new Value initialized to the concrete value // stored in the interface i. NewValue(nil) returns the zero Value. func NewValue(i interface{}) Value { if i == nil { return Value{} } _, a := unsafe.Reflect(i) return newValue(Typeof(i), addr(a), canSet|canAddr|canStore) } func newValue(typ Type, addr addr, flag uint32) Value { v := value{typ, addr, flag} switch typ.Kind() { case Array: return Value{&arrayValue{v}} case Bool: return Value{&boolValue{v}} case Chan: return Value{&chanValue{v}} case Float32, Float64: return Value{&floatValue{v}} case Func: return Value{&funcValue{value: v}} case Complex64, Complex128: return Value{&complexValue{v}} case Int, Int8, Int16, Int32, Int64: return Value{&intValue{v}} case Interface: return Value{&interfaceValue{v}} case Map: return Value{&mapValue{v}} case Ptr: return Value{&ptrValue{v}} case Slice: return Value{&sliceValue{v}} case String: return Value{&stringValue{v}} case Struct: return Value{&structValue{v}} case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: return Value{&uintValue{v}} case UnsafePointer: return Value{&unsafePointerValue{v}} } panic("newValue" + typ.String()) } // Zero returns a Value representing a zero value for the specified type. // The result is different from the zero value of the Value struct, // which represents no value at all. // For example, Zero(Typeof(42)) returns a Value with Kind Int and value 0. func Zero(typ Type) Value { if typ == nil { panic("reflect: Zero(nil)") } return newValue(typ, addr(unsafe.New(typ)), canSet|canAddr|canStore) }