// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package Parser import Scanner "scanner" import AST "ast" export type Parser struct { verbose bool; indent uint; scanner *Scanner.Scanner; tokchan *<-chan *Scanner.Token; // Scanner.Token pos int; // token source position tok int; // one token look-ahead val string; // token value (for IDENT, NUMBER, STRING only) // Non-syntactic parser control opt_semi bool; // true if semicolon is optional // Nesting levels expr_lev int; // 0 = control clause level, 1 = expr inside ()'s scope_lev int; // 0 = global scope, 1 = function scope of global functions, etc. }; // ---------------------------------------------------------------------------- // Support functions func (P *Parser) PrintIndent() { for i := P.indent; i > 0; i-- { print(". "); } } func (P *Parser) Trace(msg string) { if P.verbose { P.PrintIndent(); print(msg, " {\n"); } P.indent++; // always, so proper identation is always checked } func (P *Parser) Ecart() { P.indent--; // always, so proper identation is always checked if P.verbose { P.PrintIndent(); print("}\n"); } } func (P *Parser) Next() { if P.tokchan == nil { P.pos, P.tok, P.val = P.scanner.Scan(); } else { t := <-P.tokchan; P.tok, P.pos, P.val = t.tok, t.pos, t.val; } P.opt_semi = false; if P.verbose { P.PrintIndent(); print("[", P.pos, "] ", Scanner.TokenName(P.tok), "\n"); } } func (P *Parser) Open(verbose bool, scanner *Scanner.Scanner, tokchan *<-chan *Scanner.Token) { P.verbose = verbose; P.indent = 0; P.scanner = scanner; P.tokchan = tokchan; P.Next(); P.expr_lev = 1; P.scope_lev = 0; } func (P *Parser) Error(pos int, msg string) { P.scanner.Error(pos, msg); } func (P *Parser) Expect(tok int) { if P.tok != tok { P.Error(P.pos, "expected '" + Scanner.TokenName(tok) + "', found '" + Scanner.TokenName(P.tok) + "'"); } P.Next(); // make progress in any case } func (P *Parser) OptSemicolon() { if P.tok == Scanner.SEMICOLON { P.Next(); } } // ---------------------------------------------------------------------------- // Common productions func (P *Parser) TryType() (typ AST.Type, ok bool); func (P *Parser) ParseExpression() AST.Expr; func (P *Parser) ParseStatement() AST.Stat; func (P *Parser) ParseDeclaration() AST.Node; func (P *Parser) ParseIdent() *AST.Ident { P.Trace("Ident"); ident := new(AST.Ident); ident.pos, ident.val = P.pos, ""; if P.tok == Scanner.IDENT { ident.val = P.val; if P.verbose { P.PrintIndent(); print("Ident = \"", ident.val, "\"\n"); } P.Next(); } else { P.Expect(Scanner.IDENT); // use Expect() error handling } P.Ecart(); return ident; } func (P *Parser) ParseIdentList() *AST.List { P.Trace("IdentList"); list := AST.NewList(); list.Add(P.ParseIdent()); for P.tok == Scanner.COMMA { P.Next(); list.Add(P.ParseIdent()); } P.Ecart(); return list; } func (P *Parser) ParseQualifiedIdent() AST.Expr { P.Trace("QualifiedIdent"); ident := P.ParseIdent(); var qident AST.Expr = ident; for P.tok == Scanner.PERIOD { pos := P.pos; P.Next(); y := P.ParseIdent(); z := new(AST.Selector); z.pos, z.x, z.field = pos, qident, y.val; qident = z; } P.Ecart(); return qident; } // ---------------------------------------------------------------------------- // Types func (P *Parser) ParseType() AST.Type { P.Trace("Type"); typ, ok := P.TryType(); if !ok { P.Error(P.pos, "type expected"); } P.Ecart(); return typ; } func (P *Parser) ParseVarType() AST.Type { P.Trace("VarType"); typ := P.ParseType(); P.Ecart(); return typ; } func (P *Parser) ParseTypeName() AST.Type { P.Trace("TypeName"); typ := P.ParseQualifiedIdent(); P.Ecart(); return typ; } func (P *Parser) ParseArrayType() *AST.ArrayType { P.Trace("ArrayType"); typ := new(AST.ArrayType); typ.pos = P.pos; typ.len_ = AST.NIL; P.Expect(Scanner.LBRACK); if P.tok != Scanner.RBRACK { // TODO set typ.len typ.len_ = P.ParseExpression(); } P.Expect(Scanner.RBRACK); typ.elt = P.ParseType(); P.Ecart(); return typ; } func (P *Parser) ParseChannelType() *AST.ChannelType { P.Trace("ChannelType"); typ := new(AST.ChannelType); typ.pos = P.pos; typ.mode = AST.FULL; if P.tok == Scanner.CHAN { P.Next(); if P.tok == Scanner.ARROW { P.Next(); typ.mode = AST.SEND; } } else { P.Expect(Scanner.ARROW); P.Expect(Scanner.CHAN); typ.mode = AST.RECV; } typ.elt = P.ParseVarType(); P.Ecart(); return typ; } func (P *Parser) ParseVarDeclList() *AST.VarDeclList { P.Trace("VarDeclList"); vars := new(AST.VarDeclList); vars.idents = AST.NewList(); vars.typ = AST.NIL; vars.idents.Add(P.ParseType()); for P.tok == Scanner.COMMA { P.Next(); vars.idents.Add(P.ParseType()); } var ok bool; vars.typ, ok = P.TryType(); if !ok { // we must have a list of types } P.Ecart(); return vars; } // Returns a list of *AST.VarDeclList or Type func (P *Parser) ParseParameterList() *AST.List { P.Trace("ParameterList"); list := AST.NewList(); list.Add(P.ParseVarDeclList()); for P.tok == Scanner.COMMA { P.Next(); list.Add(P.ParseVarDeclList()); } P.Ecart(); return list; } // Returns a list of AST.VarDeclList func (P *Parser) ParseParameters() *AST.List { P.Trace("Parameters"); var list *AST.List; P.Expect(Scanner.LPAREN); if P.tok != Scanner.RPAREN { list = P.ParseParameterList(); } P.Expect(Scanner.RPAREN); P.Ecart(); return list; } func (P *Parser) ParseResultList() { P.Trace("ResultList"); P.ParseType(); for P.tok == Scanner.COMMA { P.Next(); P.ParseType(); } if P.tok != Scanner.RPAREN { P.ParseType(); } P.Ecart(); } func (P *Parser) ParseResult() *AST.List { P.Trace("Result"); var result *AST.List; if P.tok == Scanner.LPAREN { result = P.ParseParameters(); } else { typ, ok := P.TryType(); if ok { vars := new(AST.VarDeclList); vars.typ = typ; list := AST.NewList(); list.Add(vars); result = list; } } P.Ecart(); return result; } // Function types // // (params) // (params) type // (params) (results) func (P *Parser) ParseFunctionType() *AST.FunctionType { P.Trace("FunctionType"); typ := new(AST.FunctionType); typ.pos = P.pos; typ.params = P.ParseParameters(); typ.result = P.ParseResult(); P.Ecart(); return typ; } func (P *Parser) ParseMethodDecl() *AST.MethodDecl { P.Trace("MethodDecl"); decl := new(AST.MethodDecl); decl.ident = P.ParseIdent(); decl.typ = P.ParseFunctionType(); P.Ecart(); return decl; } func (P *Parser) ParseInterfaceType() *AST.InterfaceType { P.Trace("InterfaceType"); typ := new(AST.InterfaceType); typ.pos = P.pos; typ.methods = AST.NewList(); P.Expect(Scanner.INTERFACE); if P.tok == Scanner.LBRACE { P.Next(); for P.tok == Scanner.IDENT { typ.methods.Add(P.ParseMethodDecl()); if P.tok != Scanner.RBRACE { P.Expect(Scanner.SEMICOLON); } } P.Expect(Scanner.RBRACE); } P.Ecart(); return typ; } func (P *Parser) ParseMapType() *AST.MapType { P.Trace("MapType"); typ := new(AST.MapType); typ.pos = P.pos; P.Expect(Scanner.MAP); P.Expect(Scanner.LBRACK); typ.key = P.ParseVarType(); P.Expect(Scanner.RBRACK); typ.val = P.ParseVarType(); P.Ecart(); return typ; } func (P *Parser) ParseStructType() *AST.StructType { P.Trace("StructType"); typ := new(AST.StructType); typ.pos = P.pos; typ.fields = AST.NewList(); P.Expect(Scanner.STRUCT); if P.tok == Scanner.LBRACE { P.Next(); for P.tok == Scanner.IDENT { typ.fields.Add(P.ParseVarDeclList()); if P.tok != Scanner.RBRACE { P.Expect(Scanner.SEMICOLON); } } P.OptSemicolon(); P.Expect(Scanner.RBRACE); } P.Ecart(); return typ; } func (P *Parser) ParsePointerType() *AST.PointerType { P.Trace("PointerType"); typ := new(AST.PointerType); typ.pos = P.pos; P.Expect(Scanner.MUL); typ.base = P.ParseType(); P.Ecart(); return typ; } // Returns false if no type was found. func (P *Parser) TryType() (typ_ AST.Type, ok_ bool) { P.Trace("Type (try)"); var typ AST.Type = AST.NIL; found := true; switch P.tok { case Scanner.IDENT: typ = P.ParseTypeName(); case Scanner.LBRACK: typ = P.ParseArrayType(); case Scanner.CHAN, Scanner.ARROW: typ = P.ParseChannelType(); case Scanner.INTERFACE: typ = P.ParseInterfaceType(); case Scanner.LPAREN: typ = P.ParseFunctionType(); case Scanner.MAP: typ = P.ParseMapType(); case Scanner.STRUCT: typ = P.ParseStructType(); case Scanner.MUL: typ = P.ParsePointerType(); default: found = false; } P.Ecart(); return typ, found; } // ---------------------------------------------------------------------------- // Blocks func (P *Parser) ParseStatementList() *AST.List { P.Trace("StatementList"); stats := AST.NewList(); for P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { stats.Add(P.ParseStatement()); if P.tok == Scanner.SEMICOLON { P.Next(); } else if P.opt_semi { P.opt_semi = false; // "consume" optional semicolon } else { break; } } P.Ecart(); return stats; } func (P *Parser) ParseBlock() *AST.Block { P.Trace("Block"); block := new(AST.Block); block.pos = P.pos; P.Expect(Scanner.LBRACE); if P.tok != Scanner.RBRACE { block.stats = P.ParseStatementList(); } P.OptSemicolon(); P.Expect(Scanner.RBRACE); P.opt_semi = true; P.Ecart(); return block; } // ---------------------------------------------------------------------------- // Expressions func (P *Parser) ParseExpressionList(list *AST.List) { P.Trace("ExpressionList"); list.Add(P.ParseExpression()); for P.tok == Scanner.COMMA { P.Next(); list.Add(P.ParseExpression()); } P.Ecart(); } func (P *Parser) ParseNewExpressionList() *AST.List { list := AST.NewList(); P.ParseExpressionList(list); return list; } func (P *Parser) ParseFunctionLit() *AST.FunctionLit { P.Trace("FunctionLit"); fun := new(AST.FunctionLit); fun.pos = P.pos; P.Expect(Scanner.FUNC); fun.typ = P.ParseFunctionType(); P.scope_lev++; fun.body = P.ParseBlock(); P.scope_lev--; P.Ecart(); return fun; } func (P *Parser) ParseExpressionPair() AST.Expr { P.Trace("ExpressionPair"); p := new(AST.Pair); p.x = P.ParseExpression(); p.pos = P.pos; P.Expect(Scanner.COLON); p.y = P.ParseExpression(); P.Ecart(); return p; } func (P *Parser) ParseExpressionPairList(list *AST.List) { P.Trace("ExpressionPairList"); list.Add(P.ParseExpressionPair()); for P.tok == Scanner.COMMA { P.Next(); list.Add(P.ParseExpressionPair()); } P.Ecart(); } func (P *Parser) ParseOperand() AST.Expr { P.Trace("Operand"); var op AST.Expr; switch P.tok { case Scanner.IDENT: op = P.ParseIdent(); case Scanner.LPAREN: P.Next(); P.expr_lev++; op = P.ParseExpression(); P.expr_lev--; P.Expect(Scanner.RPAREN); case Scanner.INT, Scanner.FLOAT: lit := new(AST.Literal); lit.pos, lit.tok, lit.val = P.pos, P.tok, P.val; op = lit; P.Next(); case Scanner.STRING: lit := new(AST.Literal); lit.pos, lit.tok = P.pos, P.tok; for P.tok == Scanner.STRING { lit.val += P.val; P.Next(); } op = lit; case Scanner.FUNC: op = P.ParseFunctionLit(); default: typ, ok := P.TryType(); if ok { op = typ; break; } P.Error(P.pos, "operand expected"); P.Next(); // make progress } P.Ecart(); return op; } func (P *Parser) ParseSelectorOrTypeGuard(x AST.Expr) AST.Expr { P.Trace("SelectorOrTypeGuard"); pos := P.pos; P.Expect(Scanner.PERIOD); if P.tok == Scanner.IDENT { ident := P.ParseIdent(); z := new(AST.Selector); z.pos, z.x, z.field = pos, x, ident.val; x = z; } else { P.Expect(Scanner.LPAREN); P.ParseType(); P.Expect(Scanner.RPAREN); } P.Ecart(); return x; } func (P *Parser) ParseIndexOrSlice(x AST.Expr) AST.Expr { P.Trace("IndexOrSlice"); pos := P.pos; P.Expect(Scanner.LBRACK); i := P.ParseExpression(); if P.tok == Scanner.COLON { P.Next(); j := P.ParseExpression(); // TODO: handle this case } P.Expect(Scanner.RBRACK); z := new(AST.Index); z.pos, z.x, z.index = pos, x, i; P.Ecart(); return z; } func (P *Parser) ParseCall(x AST.Expr) *AST.Call { P.Trace("Call"); call := new(AST.Call); call.pos = P.pos; call.fun = x; call.args = nil; P.Expect(Scanner.LPAREN); if P.tok != Scanner.RPAREN { call.args = P.ParseNewExpressionList(); } P.Expect(Scanner.RPAREN); P.Ecart(); return call; } func (P *Parser) ParseCompositeLit(typ AST.Type) AST.Expr { P.Trace("CompositeLit"); lit := new(AST.CompositeLit); lit.pos = P.pos; lit.typ = typ; lit.vals = AST.NewList(); P.Expect(Scanner.LBRACE); if P.tok != Scanner.RBRACE { x := P.ParseExpression(); if P.tok == Scanner.COMMA { P.Next(); lit.vals.Add(x); if P.tok != Scanner.RBRACE { P.ParseExpressionList(lit.vals); } } else if P.tok == Scanner.COLON { p := new(AST.Pair); p.pos = P.pos; p.x = x; P.Next(); p.y = P.ParseExpression(); lit.vals.Add(p); if P.tok == Scanner.COMMA { P.Next(); if P.tok != Scanner.RBRACE { P.ParseExpressionPairList(lit.vals); } } } else { lit.vals.Add(x); } } P.Expect(Scanner.RBRACE); P.Ecart(); return lit; } func (P *Parser) ParsePrimaryExpr() AST.Expr { P.Trace("PrimaryExpr"); x := P.ParseOperand(); for { switch P.tok { case Scanner.PERIOD: x = P.ParseSelectorOrTypeGuard(x); case Scanner.LBRACK: x = P.ParseIndexOrSlice(x); case Scanner.LPAREN: x = P.ParseCall(x); case Scanner.LBRACE: if P.expr_lev > 0 { x = P.ParseCompositeLit(x); } else { goto exit; } default: goto exit; } } exit: P.Ecart(); return x; } func (P *Parser) ParseUnaryExpr() AST.Expr { P.Trace("UnaryExpr"); var x AST.Expr = AST.NIL; switch P.tok { case Scanner.ADD, Scanner.SUB, Scanner.NOT, Scanner.XOR, Scanner.MUL, Scanner.ARROW, Scanner.AND: pos, tok := P.pos, P.tok; P.Next(); y := P.ParseUnaryExpr(); z := new(AST.Unary); z.pos, z.tok, z.x = pos, tok, y; x = z; default: x = P.ParsePrimaryExpr(); } P.Ecart(); return x; } func (P *Parser) ParseBinaryExpr(prec1 int) AST.Expr { P.Trace("BinaryExpr"); x := P.ParseUnaryExpr(); for prec := Scanner.Precedence(P.tok); prec >= prec1; prec-- { for Scanner.Precedence(P.tok) == prec { pos, tok := P.pos, P.tok; P.Next(); y := P.ParseBinaryExpr(prec + 1); z := new(AST.Binary); z.pos, z.tok, z.x, z.y = pos, tok, x, y; x = z; } } P.Ecart(); return x; } func (P *Parser) ParseExpression() AST.Expr { P.Trace("Expression"); indent := P.indent; x := P.ParseBinaryExpr(1); if indent != P.indent { panic("imbalanced tracing code (Expression)"); } P.Ecart(); return x; } // ---------------------------------------------------------------------------- // Statements func (P *Parser) ParseSimpleStat() AST.Stat { P.Trace("SimpleStat"); var stat AST.Stat = AST.NIL; x := P.ParseNewExpressionList(); switch P.tok { case Scanner.COLON: // label declaration l := new(AST.Label); l.pos = P.pos; if x.len() == 1 { l.ident = x.at(0); } else { P.Error(P.pos, "illegal label declaration"); l.ident = AST.NIL; } P.Next(); // consume ":" P.opt_semi = true; stat = l; case Scanner.DEFINE, Scanner.ASSIGN, Scanner.ADD_ASSIGN, Scanner.SUB_ASSIGN, Scanner.MUL_ASSIGN, Scanner.QUO_ASSIGN, Scanner.REM_ASSIGN, Scanner.AND_ASSIGN, Scanner.OR_ASSIGN, Scanner.XOR_ASSIGN, Scanner.SHL_ASSIGN, Scanner.SHR_ASSIGN: pos, tok := P.pos, P.tok; P.Next(); y := P.ParseNewExpressionList(); a := new(AST.Assignment); a.pos, a.tok, a.lhs, a.rhs = pos, tok, x, y; stat = a; default: if P.tok == Scanner.INC || P.tok == Scanner.DEC { s := new(AST.IncDecStat); s.pos, s.tok = P.pos, P.tok; if x.len() == 1 { s.expr = x.at(0); } else { P.Error(P.pos, "more then one operand"); } P.Next(); stat = s; } else { s := new(AST.ExprStat); if x != nil && x.len() > 0 { s.expr = x.at(0); } else { // this is a syntax error s.expr = AST.NIL; } stat = s; } } P.Ecart(); return stat; } func (P *Parser) ParseGoStat() *AST.GoStat { P.Trace("GoStat"); stat := new(AST.GoStat); stat.pos = P.pos; P.Expect(Scanner.GO); stat.expr = P.ParseExpression(); P.Ecart(); return stat; } func (P *Parser) ParseReturnStat() *AST.ReturnStat { P.Trace("ReturnStat"); stat := new(AST.ReturnStat); stat.pos = P.pos; P.Expect(Scanner.RETURN); if P.tok != Scanner.SEMICOLON && P.tok != Scanner.RBRACE { stat.res = P.ParseNewExpressionList(); } P.Ecart(); return stat; } func (P *Parser) ParseControlFlowStat(tok int) *AST.ControlFlowStat { P.Trace("ControlFlowStat"); stat := new(AST.ControlFlowStat); stat.pos, stat.tok = P.pos, P.tok; P.Expect(tok); if P.tok == Scanner.IDENT { stat.label = P.ParseIdent(); } P.Ecart(); return stat; } func (P *Parser) ParseControlClause(keyword int) *AST.ControlClause { P.Trace("StatHeader"); ctrl := new(AST.ControlClause); ctrl.init, ctrl.expr, ctrl.post = AST.NIL, AST.NIL, AST.NIL; P.Expect(keyword); if P.tok != Scanner.LBRACE { prev_lev := P.expr_lev; P.expr_lev = 0; if P.tok != Scanner.SEMICOLON { ctrl.init = P.ParseSimpleStat(); ctrl.has_init = true; } if P.tok == Scanner.SEMICOLON { P.Next(); if P.tok != Scanner.SEMICOLON && P.tok != Scanner.LBRACE { ctrl.expr = P.ParseExpression(); ctrl.has_expr = true; } if keyword == Scanner.FOR { P.Expect(Scanner.SEMICOLON); if P.tok != Scanner.LBRACE { ctrl.post = P.ParseSimpleStat(); ctrl.has_post = true; } } } else { ctrl.expr, ctrl.has_expr = ctrl.init, ctrl.has_init; ctrl.init, ctrl.has_init = AST.NIL, false; } P.expr_lev = prev_lev; } P.Ecart(); return ctrl; } func (P *Parser) ParseIfStat() *AST.IfStat { P.Trace("IfStat"); stat := new(AST.IfStat); stat.pos = P.pos; stat.ctrl = P.ParseControlClause(Scanner.IF); stat.then = P.ParseBlock(); if P.tok == Scanner.ELSE { P.Next(); if P.tok == Scanner.IF { stat.else_ = P.ParseIfStat(); } else { // TODO: Should be P.ParseBlock(). stat.else_ = P.ParseStatement(); } stat.has_else = true; } P.Ecart(); return stat; } func (P *Parser) ParseForStat() *AST.ForStat { P.Trace("ForStat"); stat := new(AST.ForStat); stat.pos = P.pos; stat.ctrl = P.ParseControlClause(Scanner.FOR); stat.body = P.ParseBlock(); P.Ecart(); return stat; } func (P *Parser) ParseCase() *AST.CaseClause { P.Trace("Case"); clause := new(AST.CaseClause); clause.pos = P.pos; if P.tok == Scanner.CASE { P.Next(); clause.exprs = P.ParseNewExpressionList(); } else { P.Expect(Scanner.DEFAULT); } P.Expect(Scanner.COLON); P.Ecart(); return clause; } func (P *Parser) ParseCaseClause() *AST.CaseClause { P.Trace("CaseClause"); clause := P.ParseCase(); if P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE { clause.stats = P.ParseStatementList(); } P.Ecart(); return clause; } func (P *Parser) ParseSwitchStat() *AST.SwitchStat { P.Trace("SwitchStat"); stat := new(AST.SwitchStat); stat.pos = P.pos; stat.ctrl = P.ParseControlClause(Scanner.SWITCH); stat.cases = AST.NewList(); P.Expect(Scanner.LBRACE); for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { stat.cases.Add(P.ParseCaseClause()); } P.Expect(Scanner.RBRACE); P.opt_semi = true; P.Ecart(); return stat; } func (P *Parser) ParseCommCase() { P.Trace("CommCase"); if P.tok == Scanner.CASE { P.Next(); P.ParseExpression(); if P.tok == Scanner.ASSIGN || P.tok == Scanner.DEFINE { P.Next(); P.Expect(Scanner.ARROW); P.ParseExpression(); } } else { P.Expect(Scanner.DEFAULT); } P.Expect(Scanner.COLON); P.Ecart(); } func (P *Parser) ParseCommClause() { P.Trace("CommClause"); P.ParseCommCase(); if P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE { P.ParseStatementList(); } P.Ecart(); } func (P *Parser) ParseSelectStat() { P.Trace("SelectStat"); P.Expect(Scanner.SELECT); P.Expect(Scanner.LBRACE); for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF { P.ParseCommClause(); } P.Expect(Scanner.RBRACE); P.opt_semi = true; P.Ecart(); } func (P *Parser) ParseFallthroughStat() { P.Trace("FallthroughStat"); P.Expect(Scanner.FALLTHROUGH); P.Ecart(); } func (P *Parser) ParseEmptyStat() { P.Trace("EmptyStat"); P.Ecart(); } func (P *Parser) ParseRangeStat() { P.Trace("RangeStat"); P.Expect(Scanner.RANGE); P.ParseIdentList(); P.Expect(Scanner.DEFINE); P.ParseExpression(); P.ParseBlock(); P.Ecart();; } func (P *Parser) ParseStatement() AST.Stat { P.Trace("Statement"); indent := P.indent; var stat AST.Stat = AST.NIL; switch P.tok { case Scanner.CONST, Scanner.TYPE, Scanner.VAR: stat = P.ParseDeclaration(); case Scanner.FUNC: // for now we do not allow local function declarations fallthrough; case // only the tokens that are legal top-level expression starts Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING, Scanner.LPAREN, // operand Scanner.LBRACK, Scanner.STRUCT, // composite type Scanner.MUL, Scanner.AND, Scanner.ARROW: // unary stat = P.ParseSimpleStat(); case Scanner.GO: stat = P.ParseGoStat(); case Scanner.RETURN: stat = P.ParseReturnStat(); case Scanner.BREAK, Scanner.CONTINUE, Scanner.GOTO: stat = P.ParseControlFlowStat(P.tok); case Scanner.LBRACE: stat = P.ParseBlock(); case Scanner.IF: stat = P.ParseIfStat(); case Scanner.FOR: stat = P.ParseForStat(); case Scanner.SWITCH: stat = P.ParseSwitchStat(); case Scanner.RANGE: P.ParseRangeStat(); case Scanner.SELECT: P.ParseSelectStat(); case Scanner.FALLTHROUGH: P.ParseFallthroughStat(); default: P.ParseEmptyStat(); // for complete tracing output only } if indent != P.indent { panic("imbalanced tracing code (Statement)"); } P.Ecart(); return stat; } // ---------------------------------------------------------------------------- // Declarations func (P *Parser) ParseImportSpec() *AST.ImportDecl { P.Trace("ImportSpec"); decl := new(AST.ImportDecl); if P.tok == Scanner.PERIOD { P.Error(P.pos, `"import ." not yet handled properly`); P.Next(); } else if P.tok == Scanner.IDENT { decl.ident = P.ParseIdent(); } if P.tok == Scanner.STRING { // TODO eventually the scanner should strip the quotes decl.file = P.val; P.Next(); } else { P.Expect(Scanner.STRING); // use Expect() error handling } P.Ecart(); return decl; } func (P *Parser) ParseConstSpec(exported bool) *AST.ConstDecl { P.Trace("ConstSpec"); decl := new(AST.ConstDecl); decl.ident = P.ParseIdent(); var ok bool; decl.typ, ok = P.TryType(); decl.val = AST.NIL; if P.tok == Scanner.ASSIGN { P.Next(); decl.val = P.ParseExpression(); } P.Ecart(); return decl; } func (P *Parser) ParseTypeSpec(exported bool) *AST.TypeDecl { P.Trace("TypeSpec"); decl := new(AST.TypeDecl); decl.ident = P.ParseIdent(); decl.typ = P.ParseType(); P.opt_semi = true; P.Ecart(); return decl; } func (P *Parser) ParseVarSpec(exported bool) *AST.VarDecl { P.Trace("VarSpec"); decl := new(AST.VarDecl); decl.idents = P.ParseIdentList(); if P.tok == Scanner.ASSIGN { P.Next(); decl.typ = AST.NIL; decl.vals = P.ParseNewExpressionList(); } else { decl.typ = P.ParseVarType(); if P.tok == Scanner.ASSIGN { P.Next(); decl.vals = P.ParseNewExpressionList(); } } P.Ecart(); return decl; } // TODO Replace this by using function pointers derived from methods. func (P *Parser) ParseSpec(exported bool, keyword int) AST.Decl { switch keyword { case Scanner.IMPORT: return P.ParseImportSpec(); case Scanner.CONST: return P.ParseConstSpec(exported); case Scanner.TYPE: return P.ParseTypeSpec(exported); case Scanner.VAR: return P.ParseVarSpec(exported); } panic("UNREACHABLE"); return AST.NIL; } func (P *Parser) ParseDecl(exported bool, keyword int) *AST.Declaration { P.Trace("Decl"); decl := new(AST.Declaration); decl.decls = AST.NewList(); decl.pos, decl.tok = P.pos, P.tok; P.Expect(keyword); if P.tok == Scanner.LPAREN { P.Next(); for P.tok != Scanner.RPAREN && P.tok != Scanner.EOF { decl.decls.Add(P.ParseSpec(exported, keyword)); if P.tok == Scanner.SEMICOLON { P.Next(); } else { break; } } P.Expect(Scanner.RPAREN); P.opt_semi = true; } else { decl.decls.Add(P.ParseSpec(exported, keyword)); } P.Ecart(); return decl; } // Function declarations // // func ident (params) // func ident (params) type // func ident (params) (results) // func (recv) ident (params) // func (recv) ident (params) type // func (recv) ident (params) (results) func (P *Parser) ParseFunctionDecl(exported bool) *AST.FuncDecl { P.Trace("FunctionDecl"); fun := new(AST.FuncDecl); fun.pos = P.pos; P.Expect(Scanner.FUNC); var recv *AST.VarDeclList; if P.tok == Scanner.LPAREN { pos := P.pos; tmp := P.ParseParameters(); if tmp.len() > 0 { recv = tmp.at(0); } if recv.idents.len() != 1 { P.Error(pos, "must have exactly one receiver"); } } fun.ident = P.ParseIdent(); fun.typ = P.ParseFunctionType(); fun.typ.recv = recv; if P.tok == Scanner.LBRACE { P.scope_lev++; fun.body = P.ParseBlock(); P.scope_lev--; } P.Ecart(); return fun; } func (P *Parser) ParseExportDecl() { P.Trace("ExportDecl"); // TODO This is deprecated syntax and should go away eventually. // (Also at the moment the syntax is everything goes...) //P.Expect(Scanner.EXPORT); has_paren := false; if P.tok == Scanner.LPAREN { P.Next(); has_paren = true; } for P.tok == Scanner.IDENT { ident := P.ParseIdent(); if P.tok == Scanner.COMMA { P.Next(); // TODO this seems wrong } } if has_paren { P.Expect(Scanner.RPAREN) } P.Ecart(); } func (P *Parser) ParseDeclaration() AST.Node { P.Trace("Declaration"); indent := P.indent; var node AST.Node; exported := false; if P.tok == Scanner.EXPORT { if P.scope_lev == 0 { exported = true; } else { P.Error(P.pos, "local declarations cannot be exported"); } P.Next(); } switch P.tok { case Scanner.CONST, Scanner.TYPE, Scanner.VAR: node = P.ParseDecl(exported, P.tok); case Scanner.FUNC: node = P.ParseFunctionDecl(exported); case Scanner.EXPORT: if exported { P.Error(P.pos, "cannot mark export declaration for export"); } P.Next(); P.ParseExportDecl(); default: if exported && (P.tok == Scanner.IDENT || P.tok == Scanner.LPAREN) { P.ParseExportDecl(); } else { P.Error(P.pos, "declaration expected"); P.Next(); // make progress } } if indent != P.indent { panic("imbalanced tracing code (Declaration)"); } P.Ecart(); return node; } // ---------------------------------------------------------------------------- // Program func (P *Parser) ParseProgram() *AST.Program { P.Trace("Program"); pos := P.pos; P.Expect(Scanner.PACKAGE); ident := P.ParseIdent(); decls := AST.NewList(); for P.tok == Scanner.IMPORT { decls.Add(P.ParseDecl(false, Scanner.IMPORT)); P.OptSemicolon(); } for P.tok != Scanner.EOF { decls.Add(P.ParseDeclaration()); P.OptSemicolon(); } P.Ecart(); x := new(AST.Program); x.pos, x.ident, x.decls = pos, ident, decls; return x; }