// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // IP address manipulations // // IPv4 addresses are 4 bytes; IPv6 addresses are 16 bytes. // An IPv4 address can be converted to an IPv6 address by // adding a canonical prefix (10 zeros, 2 0xFFs). // This library accepts either size of byte array but always // returns 16-byte addresses. package net export const ( IPv4len = 4; IPv6len = 16 ) // Make the 4 bytes into an IPv4 address (in IPv6 form) func MakeIPv4(a, b, c, d byte) *[]byte { p := new([]byte, IPv6len); for i := 0; i < 10; i++ { p[i] = 0 } p[10] = 0xff; p[11] = 0xff; p[12] = a; p[13] = b; p[14] = c; p[15] = d; return p } // Well-known IP addresses export var IPv4bcast, IPv4allsys, IPv4allrouter, IPv4prefix, IPallbits, IPnoaddr *[]byte func init() { IPv4bcast = MakeIPv4(0xff, 0xff, 0xff, 0xff); IPv4allsys = MakeIPv4(0xe0, 0x00, 0x00, 0x01); IPv4allrouter = MakeIPv4(0xe0, 0x00, 0x00, 0x02); IPv4prefix = MakeIPv4(0, 0, 0, 0); IPallbits = new([]byte, IPv6len); for i := 0; i < IPv6len; i++ { IPallbits[i] = 0xff } IPnoaddr = new([]byte, IPv6len); // zeroed } // Is p all zeros? func IsZeros(p *[]byte) bool { for i := 0; i < len(p); i++ { if p[i] != 0 { return false } } return true } // Is p an IPv4 address (perhaps in IPv6 form)? // If so, return the 4-byte V4 array. export func ToIPv4(p *[]byte) *[]byte { if len(p) == IPv4len { return p } if len(p) == IPv6len && IsZeros(p[0:10]) && p[10] == 0xff && p[11] == 0xff { return p[12:16] } return nil } // Convert p to IPv6 form. export func ToIPv6(p *[]byte) *[]byte { if len(p) == IPv4len { return MakeIPv4(p[0], p[1], p[2], p[3]) } if len(p) == IPv6len { return p } return nil } // Default route masks for IPv4. export var ( ClassAMask = MakeIPv4(0xff, 0, 0, 0); ClassBMask = MakeIPv4(0xff, 0xff, 0, 0); ClassCMask = MakeIPv4(0xff, 0xff, 0xff, 0); ) export func DefaultMask(p *[]byte) *[]byte { if p = ToIPv4(p); p == nil { return nil } switch true { case p[0] < 0x80: return ClassAMask; case p[0] < 0xC0: return ClassBMask; default: return ClassCMask; } return nil; // not reached } // Apply mask to ip, returning new address. export func Mask(ip *[]byte, mask *[]byte) *[]byte { n := len(ip); if n != len(mask) { return nil } out := new([]byte, n); for i := 0; i < n; i++ { out[i] = ip[i] & mask[i]; } return out } // Convert i to decimal string. func itod(i uint) string { if i == 0 { return "0" } // Assemble decimal in reverse order. var b [32]byte; bp := len(b); for ; i > 0; i /= 10 { bp--; b[bp] = byte(i%10) + '0' } // return string(b[bp:len(b)]) return string((&b)[bp:len(b)]) } // Convert i to hexadecimal string. func itox(i uint) string { if i == 0 { return "0" } // Assemble hexadecimal in reverse order. var b [32]byte; bp := len(b); for ; i > 0; i /= 16 { bp--; b[bp] = "0123456789abcdef"[byte(i%16)] } // return string(b[bp:len(b)]) return string((&b)[bp:len(b)]) } // Convert IP address to string. export func IPToString(p *[]byte) string { // If IPv4, use dotted notation. if p4 := ToIPv4(p); p4 != nil { return itod(uint(p4[0]))+"." +itod(uint(p4[1]))+"." +itod(uint(p4[2]))+"." +itod(uint(p4[3])) } if len(p) != IPv6len { return "?" } // Find longest run of zeros. e0 := -1; e1 := -1; for i := 0; i < 16; i+=2 { j := i; for j < 16 && p[j] == 0 && p[j+1] == 0 { j += 2 } if j > i && j - i > e1 - e0 { e0 = i; e1 = j } } // Print with possible :: in place of run of zeros var s string; for i := 0; i < 16; i += 2 { if i == e0 { s += "::"; i = e1; if i >= 16 { break } } else if i > 0 { s += ":" } s += itox((uint(p[i])<<8) | uint(p[i+1])) } return s } // If mask is a sequence of 1 bits followed by 0 bits, // return the number of 1 bits. func SimpleMaskLength(mask *[]byte) int { var i int; for i = 0; i < len(mask); i++ { if mask[i] != 0xFF { break } } n := 8*i; v := mask[i]; for v & 0x80 != 0 { n++; v <<= 1 } if v != 0 { return -1 } for i++; i < len(mask); i++ { if mask[i] != 0 { return -1 } } return n } export func MaskToString(mask *[]byte) string { switch len(mask) { case 4: n := SimpleMaskLength(mask); if n >= 0 { return itod(uint(n+(IPv6len-IPv4len)*8)) } case 16: n := SimpleMaskLength(mask); if n >= 0 { return itod(uint(n)) } } return IPToString(mask) } // Parsing. // Bigger than we need, not too big to worry about overflow const Big = 0xFFFFFF // Decimal to integer starting at &s[i]. // Returns number, new offset, success. func dtoi(s string, i int) (n int, i1 int, ok bool) { if len(s) <= i || s[i] < '0' || s[i] > '9' { return 0, i, false } n = 0; for ; i < len(s) && '0' <= s[i] && s[i] <= '9'; i++ { n = n*10 + int(s[i] - '0'); if n >= Big { return 0, i, false } } return n, i, true } // Is b a hex digit? func ishex(b byte) bool { return '0' <= b && b <= '9' || 'a' <= b && b <= 'f' || 'A' <= b && b <= 'F' } // Hexadecimal to integer starting at &s[i]. // Returns number, new offset, success. func xtoi(s string, i int) (n int, i1 int, ok bool) { if len(s) <= i || !ishex(s[i]) { return 0, i, false } n = 0; for ; i < len(s) && ishex(s[i]); i++ { n *= 16; if '0' <= s[i] && s[i] <= '9' { n += int(s[i] - '0') } else if 'a' <= s[i] && s[i] <= 'f' { n += int(s[i] - 'a') + 10 } else { n += int(s[i] -'A') + 10 } if n >= Big { return 0, i, false } } return n, i, true } // Parse IPv4 address (d.d.d.d). func ParseIPv4(s string) *[]byte { var p [IPv4len]byte; i := 0; for j := 0; j < IPv4len; j++ { if j > 0 { if s[i] != '.' { return nil } i++; } var ( n int; ok bool ) n, i, ok = dtoi(s, i); if !ok || n > 0xFF { return nil } p[j] = byte(n) } if i != len(s) { return nil } return MakeIPv4(p[0], p[1], p[2], p[3]) } // Parse IPv6 address. Many forms. // The basic form is a sequence of eight colon-separated // 16-bit hex numbers separated by colons, // as in 0123:4567:89ab:cdef:0123:4567:89ab:cdef. // Two exceptions: // * A run of zeros can be replaced with "::". // * The last 32 bits can be in IPv4 form. // Thus, ::ffff:1.2.3.4 is the IPv4 address 1.2.3.4. func ParseIPv6(s string) *[]byte { p := new([]byte, 16); ellipsis := -1; // position of ellipsis in p i := 0; // index in string s // Might have leading ellipsis if len(s) >= 2 && s[0] == ':' && s[1] == ':' { ellipsis = 0; i = 2; // Might be only ellipsis if i == len(s) { return p } } // Loop, parsing hex numbers followed by colon. j := 0; L: for j < IPv6len { // Hex number. n, i1, ok := xtoi(s, i); if !ok || n > 0xFFFF { return nil } // If followed by dot, might be in trailing IPv4. if i1 < len(s) && s[i1] == '.' { if ellipsis < 0 && j != IPv6len - IPv4len { // Not the right place. return nil } if j+IPv4len > IPv6len { // Not enough room. return nil } p4 := ParseIPv4(s[i:len(s)]); if p4 == nil { return nil } // BUG: p[j:j+4] = p4 p[j] = p4[12]; p[j+1] = p4[13]; p[j+2] = p4[14]; p[j+3] = p4[15]; i = len(s); j += 4; break } // Save this 16-bit chunk. p[j] = byte(n>>8); p[j+1] = byte(n); j += 2; // Stop at end of string. i = i1; if i == len(s) { break } // Otherwise must be followed by colon and more. if s[i] != ':' && i+1 == len(s) { return nil } i++; // Look for ellipsis. if s[i] == ':' { if ellipsis >= 0 { // already have one return nil } ellipsis = j; if i++; i == len(s) { // can be at end break } } } // Must have used entire string. if i != len(s) { return nil } // If didn't parse enough, expand ellipsis. if j < IPv6len { if ellipsis < 0 { return nil } n := IPv6len - j; for k := j-1; k >= ellipsis; k-- { p[k+n] = p[k] } for k := ellipsis+n-1; k>=ellipsis; k-- { p[k] = 0 } } return p } export func ParseIP(s string) *[]byte { p := ParseIPv4(s); if p != nil { return p } return ParseIPv6(s) }