// Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build darwin dragonfly freebsd linux netbsd openbsd solaris package runtime const ( _SIG_DFL uintptr = 0 _SIG_IGN uintptr = 1 ) // Stores the signal handlers registered before Go installed its own. // These signal handlers will be invoked in cases where Go doesn't want to // handle a particular signal (e.g., signal occurred on a non-Go thread). // See sigfwdgo() for more information on when the signals are forwarded. // // Signal forwarding is currently available only on Linux. var fwdSig [_NSIG]uintptr // sigmask represents a general signal mask compatible with the GOOS // specific sigset types: the signal numbered x is represented by bit x-1 // to match the representation expected by sigprocmask. type sigmask [(_NSIG + 31) / 32]uint32 // channels for synchronizing signal mask updates with the signal mask // thread var ( disableSigChan chan uint32 enableSigChan chan uint32 maskUpdatedChan chan struct{} ) func initsig() { // _NSIG is the number of signals on this operating system. // sigtable should describe what to do for all the possible signals. if len(sigtable) != _NSIG { print("runtime: len(sigtable)=", len(sigtable), " _NSIG=", _NSIG, "\n") throw("initsig") } // First call: basic setup. for i := int32(0); i < _NSIG; i++ { t := &sigtable[i] if t.flags == 0 || t.flags&_SigDefault != 0 { continue } fwdSig[i] = getsig(i) // For some signals, we respect an inherited SIG_IGN handler // rather than insist on installing our own default handler. // Even these signals can be fetched using the os/signal package. switch i { case _SIGHUP, _SIGINT: if getsig(i) == _SIG_IGN { t.flags = _SigNotify | _SigIgnored continue } } if t.flags&_SigSetStack != 0 { setsigstack(i) continue } t.flags |= _SigHandling setsig(i, funcPC(sighandler), true) } } func sigenable(sig uint32) { if sig >= uint32(len(sigtable)) { return } t := &sigtable[sig] if t.flags&_SigNotify != 0 { ensureSigM() enableSigChan <- sig <-maskUpdatedChan if t.flags&_SigHandling == 0 { t.flags |= _SigHandling if getsig(int32(sig)) == _SIG_IGN { t.flags |= _SigIgnored } setsig(int32(sig), funcPC(sighandler), true) } } } func sigdisable(sig uint32) { if sig >= uint32(len(sigtable)) { return } t := &sigtable[sig] if t.flags&_SigNotify != 0 { ensureSigM() disableSigChan <- sig <-maskUpdatedChan if t.flags&_SigHandling != 0 { t.flags &^= _SigHandling if t.flags&_SigIgnored != 0 { setsig(int32(sig), _SIG_IGN, true) } else { setsig(int32(sig), _SIG_DFL, true) } } } } func sigignore(sig uint32) { if sig >= uint32(len(sigtable)) { return } t := &sigtable[sig] if t.flags&_SigNotify != 0 { t.flags &^= _SigHandling setsig(int32(sig), _SIG_IGN, true) } } func resetcpuprofiler(hz int32) { var it itimerval if hz == 0 { setitimer(_ITIMER_PROF, &it, nil) } else { it.it_interval.tv_sec = 0 it.it_interval.set_usec(1000000 / hz) it.it_value = it.it_interval setitimer(_ITIMER_PROF, &it, nil) } _g_ := getg() _g_.m.profilehz = hz } func sigpipe() { setsig(_SIGPIPE, _SIG_DFL, false) raise(_SIGPIPE) } // raisebadsignal is called when a signal is received on a non-Go // thread, and the Go program does not want to handle it (that is, the // program has not called os/signal.Notify for the signal). func raisebadsignal(sig int32) { if sig == _SIGPROF { // Ignore profiling signals that arrive on non-Go threads. return } var handler uintptr if sig >= _NSIG { handler = _SIG_DFL } else { handler = fwdSig[sig] } // Reset the signal handler and raise the signal. // We are currently running inside a signal handler, so the // signal is blocked. We need to unblock it before raising the // signal, or the signal we raise will be ignored until we return // from the signal handler. We know that the signal was unblocked // before entering the handler, or else we would not have received // it. That means that we don't have to worry about blocking it // again. unblocksig(sig) setsig(sig, handler, false) raise(sig) // If the signal didn't cause the program to exit, restore the // Go signal handler and carry on. // // We may receive another instance of the signal before we // restore the Go handler, but that is not so bad: we know // that the Go program has been ignoring the signal. setsig(sig, funcPC(sighandler), true) } func crash() { if GOOS == "darwin" { // OS X core dumps are linear dumps of the mapped memory, // from the first virtual byte to the last, with zeros in the gaps. // Because of the way we arrange the address space on 64-bit systems, // this means the OS X core file will be >128 GB and even on a zippy // workstation can take OS X well over an hour to write (uninterruptible). // Save users from making that mistake. if ptrSize == 8 { return } } updatesigmask(sigmask{}) setsig(_SIGABRT, _SIG_DFL, false) raise(_SIGABRT) } // createSigM starts one global, sleeping thread to make sure at least one thread // is available to catch signals enabled for os/signal. func ensureSigM() { if maskUpdatedChan != nil { return } maskUpdatedChan = make(chan struct{}) disableSigChan = make(chan uint32) enableSigChan = make(chan uint32) go func() { // Signal masks are per-thread, so make sure this goroutine stays on one // thread. LockOSThread() defer UnlockOSThread() // The sigBlocked mask contains the signals not active for os/signal, // initially all signals except the essential. When signal.Notify()/Stop is called, // sigenable/sigdisable in turn notify this thread to update its signal // mask accordingly. var sigBlocked sigmask for i := range sigBlocked { sigBlocked[i] = ^uint32(0) } for i := range sigtable { if sigtable[i].flags&_SigUnblock != 0 { sigBlocked[(i-1)/32] &^= 1 << ((uint32(i) - 1) & 31) } } updatesigmask(sigBlocked) for { select { case sig := <-enableSigChan: if b := sig - 1; b >= 0 { sigBlocked[b/32] &^= (1 << (b & 31)) } case sig := <-disableSigChan: if b := sig - 1; b >= 0 { sigBlocked[b/32] |= (1 << (b & 31)) } } updatesigmask(sigBlocked) maskUpdatedChan <- struct{}{} } }() }