// $G $D/$F.go && $L $F.$A && ./$A.out // Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Power series package // A power series is a channel, along which flow rational // coefficients. A denominator of zero signifies the end. // Original code in Newsqueak by Doug McIlroy. // See Squinting at Power Series by Doug McIlroy, // http://www.cs.bell-labs.com/who/rsc/thread/squint.pdf package main type rat struct { num, den int64; // numerator, denominator } func (u rat) pr() { if u.den==1 { print(u.num) } else { print(u.num, "/", u.den) } print(" ") } func (u rat) eq(c rat) bool { return u.num == c.num && u.den == c.den } type dch struct { req chan int; dat chan rat; nam int; } type dch2 [2] *dch var chnames string var chnameserial int var seqno int func Init(); func mkdch() *dch { c := chnameserial % len(chnames); chnameserial++; d := new(dch); d.req = make(chan int); d.dat = make(chan rat); d.nam = c; return d; } func mkdch2() *dch2 { d2 := new(dch2); d2[0] = mkdch(); d2[1] = mkdch(); return d2; } // split reads a single demand channel and replicates its // output onto two, which may be read at different rates. // A process is created at first demand for a rat and dies // after the rat has been sent to both outputs. // When multiple generations of split exist, the newest // will service requests on one channel, which is // always renamed to be out[0]; the oldest will service // requests on the other channel, out[1]. All generations but the // newest hold queued data that has already been sent to // out[0]. When data has finally been sent to out[1], // a signal on the release-wait channel tells the next newer // generation to begin servicing out[1]. func dosplit(in *dch, out *dch2, wait chan int ) { var t *dch; both := false; // do not service both channels select { case <-out[0].req: ; case <-wait: both = true; select { case <-out[0].req: ; case <-out[1].req: t=out[0]; out[0]=out[1]; out[1]=t; } } seqno++; in.req <- seqno; release := make(chan int); go dosplit(in, out, release); dat := <-in.dat; out[0].dat <- dat; if !both { <-wait } <-out[1].req; out[1].dat <- dat; release <- 0; } func split(in *dch, out *dch2) { release := make(chan int); go dosplit(in, out, release); release <- 0; } func put(dat rat, out *dch) { <-out.req; out.dat <- dat; } func get(in *dch) rat { seqno++; in.req <- seqno; return <-in.dat; } // Get one rat from each of n demand channels func getn(in []*dch) []rat { n := len(in); if n != 2 { panic("bad n in getn") }; req := new([2] chan int); dat := new([2] chan rat); out := make([]rat, 2); var i int; var it rat; for i=0; i0; n-- { seqno++; select { case req[0] <- seqno: dat[0] = in[0].dat; req[0] = nil; case req[1] <- seqno: dat[1] = in[1].dat; req[1] = nil; case it = <-dat[0]: out[0] = it; dat[0] = nil; case it = <-dat[1]: out[1] = it; dat[1] = nil; } } return out; } // Get one rat from each of 2 demand channels func get2(in0 *dch, in1 *dch) []rat { return getn([]*dch{in0, in1}); } func copy(in *dch, out *dch) { for { <-out.req; out.dat <- get(in); } } func repeat(dat rat, out *dch) { for { put(dat, out) } } type PS *dch; // power series type PS2 *[2] PS; // pair of power series var Ones PS var Twos PS func mkPS() *dch { return mkdch() } func mkPS2() *dch2 { return mkdch2() } // Conventions // Upper-case for power series. // Lower-case for rationals. // Input variables: U,V,... // Output variables: ...,Y,Z // Integer gcd; needed for rational arithmetic func gcd (u, v int64) int64 { if u < 0 { return gcd(-u, v) } if u == 0 { return v } return gcd(v%u, u) } // Make a rational from two ints and from one int func i2tor(u, v int64) rat { g := gcd(u,v); var r rat; if v > 0 { r.num = u/g; r.den = v/g; } else { r.num = -u/g; r.den = -v/g; } return r; } func itor(u int64) rat { return i2tor(u, 1); } var zero rat; var one rat; // End mark and end test var finis rat; func end(u rat) int64 { if u.den==0 { return 1 } return 0 } // Operations on rationals func add(u, v rat) rat { g := gcd(u.den,v.den); return i2tor(u.num*(v.den/g)+v.num*(u.den/g),u.den*(v.den/g)); } func mul(u, v rat) rat { g1 := gcd(u.num,v.den); g2 := gcd(u.den,v.num); var r rat; r.num = (u.num/g1)*(v.num/g2); r.den = (u.den/g2)*(v.den/g1); return r; } func neg(u rat) rat { return i2tor(-u.num, u.den); } func sub(u, v rat) rat { return add(u, neg(v)); } func inv(u rat) rat { // invert a rat if u.num == 0 { panic("zero divide in inv") } return i2tor(u.den, u.num); } // print eval in floating point of PS at x=c to n terms func evaln(c rat, U PS, n int) { xn := float64(1); x := float64(c.num)/float64(c.den); val := float64(0); for i:=0; i0; n-- { u := get(U); if end(u) != 0 { done = true } else { u.pr() } } print(("\n")); } // Evaluate n terms of power series U at x=c func eval(c rat, U PS, n int) rat { if n==0 { return zero } y := get(U); if end(y) != 0 { return zero } return add(y,mul(c,eval(c,U,n-1))); } // Power-series constructors return channels on which power // series flow. They start an encapsulated generator that // puts the terms of the series on the channel. // Make a pair of power series identical to a given power series func Split(U PS) *dch2 { UU := mkdch2(); go split(U,UU); return UU; } // Add two power series func Add(U, V PS) PS { Z := mkPS(); go func() { var uv []rat; for { <-Z.req; uv = get2(U,V); switch end(uv[0])+2*end(uv[1]) { case 0: Z.dat <- add(uv[0], uv[1]); case 1: Z.dat <- uv[1]; copy(V,Z); case 2: Z.dat <- uv[0]; copy(U,Z); case 3: Z.dat <- finis; } } }(); return Z; } // Multiply a power series by a constant func Cmul(c rat,U PS) PS { Z := mkPS(); go func() { done := false; for !done { <-Z.req; u := get(U); if end(u) != 0 { done = true } else { Z.dat <- mul(c,u) } } Z.dat <- finis; }(); return Z; } // Subtract func Sub(U, V PS) PS { return Add(U, Cmul(neg(one), V)); } // Multiply a power series by the monomial x^n func Monmul(U PS, n int) PS { Z := mkPS(); go func() { for ; n>0; n-- { put(zero,Z) } copy(U,Z); }(); return Z; } // Multiply by x func Xmul(U PS) PS { return Monmul(U,1); } func Rep(c rat) PS { Z := mkPS(); go repeat(c,Z); return Z; } // Monomial c*x^n func Mon(c rat, n int) PS { Z:=mkPS(); go func() { if(c.num!=0) { for ; n>0; n=n-1 { put(zero,Z) } put(c,Z); } put(finis,Z); }(); return Z; } func Shift(c rat, U PS) PS { Z := mkPS(); go func() { put(c,Z); copy(U,Z); }(); return Z; } // simple pole at 1: 1/(1-x) = 1 1 1 1 1 ... // Convert array of coefficients, constant term first // to a (finite) power series /* func Poly(a []rat) PS { Z:=mkPS(); begin func(a []rat, Z PS) { j:=0; done:=0; for j=len(a); !done&&j>0; j=j-1) if(a[j-1].num!=0) done=1; i:=0; for(; i 1 { // print print("Ones: "); printn(Ones, 10); print("Twos: "); printn(Twos, 10); print("Add: "); printn(Add(Ones, Twos), 10); print("Diff: "); printn(Diff(Ones), 10); print("Integ: "); printn(Integ(zero, Ones), 10); print("CMul: "); printn(Cmul(neg(one), Ones), 10); print("Sub: "); printn(Sub(Ones, Twos), 10); print("Mul: "); printn(Mul(Ones, Ones), 10); print("Exp: "); printn(Exp(Ones), 15); print("MonSubst: "); printn(MonSubst(Ones, neg(one), 2), 10); print("ATan: "); printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10); } else { // test check(Ones, one, 5, "Ones"); check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones"); // 1 1 1 1 1 check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos"); // 3 3 3 3 3 a := make([]rat, N); d := Diff(Ones); for i:=0; i < N; i++ { a[i] = itor(int64(i+1)) } checka(d, a, "Diff"); // 1 2 3 4 5 in := Integ(zero, Ones); a[0] = zero; // integration constant for i:=1; i < N; i++ { a[i] = i2tor(1, int64(i)) } checka(in, a, "Integ"); // 0 1 1/2 1/3 1/4 1/5 check(Cmul(neg(one), Twos), itor(-2), 10, "CMul"); // -1 -1 -1 -1 -1 check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos"); // -1 -1 -1 -1 -1 m := Mul(Ones, Ones); for i:=0; i < N; i++ { a[i] = itor(int64(i+1)) } checka(m, a, "Mul"); // 1 2 3 4 5 e := Exp(Ones); a[0] = itor(1); a[1] = itor(1); a[2] = i2tor(3,2); a[3] = i2tor(13,6); a[4] = i2tor(73,24); a[5] = i2tor(167,40); a[6] = i2tor(4051,720); a[7] = i2tor(37633,5040); a[8] = i2tor(43817,4480); a[9] = i2tor(4596553,362880); checka(e, a, "Exp"); // 1 1 3/2 13/6 73/24 at := Integ(zero, MonSubst(Ones, neg(one), 2)); for c, i := 1, 0; i < N; i++ { if i%2 == 0 { a[i] = zero } else { a[i] = i2tor(int64(c), int64(i)); c *= -1 } } checka(at, a, "ATan"); // 0 -1 0 -1/3 0 -1/5 /* t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2))); a[0] = zero; a[1] = itor(1); a[2] = zero; a[3] = i2tor(1,3); a[4] = zero; a[5] = i2tor(2,15); a[6] = zero; a[7] = i2tor(17,315); a[8] = zero; a[9] = i2tor(62,2835); checka(t, a, "Tan"); // 0 1 0 1/3 0 2/15 */ } }