// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import "unsafe" const ( _ESRCH = 3 _ENOTSUP = 91 // From NetBSD's _CLOCK_REALTIME = 0 _CLOCK_VIRTUAL = 1 _CLOCK_PROF = 2 _CLOCK_MONOTONIC = 3 ) var sigset_none = sigset{} var sigset_all = sigset{[4]uint32{^uint32(0), ^uint32(0), ^uint32(0), ^uint32(0)}} // From NetBSD's const ( _CTL_HW = 6 _HW_NCPU = 3 ) func getncpu() int32 { mib := [2]uint32{_CTL_HW, _HW_NCPU} out := uint32(0) nout := unsafe.Sizeof(out) ret := sysctl(&mib[0], 2, (*byte)(unsafe.Pointer(&out)), &nout, nil, 0) if ret >= 0 { return int32(out) } return 1 } //go:nosplit func semacreate() uintptr { return 1 } //go:nosplit func semasleep(ns int64) int32 { _g_ := getg() // spin-mutex lock for { if xchg(&_g_.m.waitsemalock, 1) == 0 { break } osyield() } for { // lock held if _g_.m.waitsemacount == 0 { // sleep until semaphore != 0 or timeout. // thrsleep unlocks m.waitsemalock. if ns < 0 { // TODO(jsing) - potential deadlock! // // There is a potential deadlock here since we // have to release the waitsemalock mutex // before we call lwp_park() to suspend the // thread. This allows another thread to // release the lock and call lwp_unpark() // before the thread is actually suspended. // If this occurs the current thread will end // up sleeping indefinitely. Unfortunately // the NetBSD kernel does not appear to provide // a mechanism for unlocking the userspace // mutex once the thread is actually parked. atomicstore(&_g_.m.waitsemalock, 0) lwp_park(nil, 0, unsafe.Pointer(&_g_.m.waitsemacount), nil) } else { var ts timespec var nsec int32 ns += nanotime() ts.set_sec(timediv(ns, 1000000000, &nsec)) ts.set_nsec(nsec) // TODO(jsing) - potential deadlock! // See above for details. atomicstore(&_g_.m.waitsemalock, 0) lwp_park(&ts, 0, unsafe.Pointer(&_g_.m.waitsemacount), nil) } // reacquire lock for { if xchg(&_g_.m.waitsemalock, 1) == 0 { break } osyield() } } // lock held (again) if _g_.m.waitsemacount != 0 { // semaphore is available. _g_.m.waitsemacount-- // spin-mutex unlock atomicstore(&_g_.m.waitsemalock, 0) return 0 } // semaphore not available. // if there is a timeout, stop now. // otherwise keep trying. if ns >= 0 { break } } // lock held but giving up // spin-mutex unlock atomicstore(&_g_.m.waitsemalock, 0) return -1 } //go:nosplit func semawakeup(mp *m) { // spin-mutex lock for { if xchg(&mp.waitsemalock, 1) == 0 { break } osyield() } mp.waitsemacount++ // TODO(jsing) - potential deadlock, see semasleep() for details. // Confirm that LWP is parked before unparking... ret := lwp_unpark(int32(mp.procid), unsafe.Pointer(&mp.waitsemacount)) if ret != 0 && ret != _ESRCH { // semawakeup can be called on signal stack. systemstack(func() { print("thrwakeup addr=", &mp.waitsemacount, " sem=", mp.waitsemacount, " ret=", ret, "\n") }) } // spin-mutex unlock atomicstore(&mp.waitsemalock, 0) } func newosproc(mp *m, stk unsafe.Pointer) { if false { print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " id=", mp.id, "/", int32(mp.tls[0]), " ostk=", &mp, "\n") } mp.tls[0] = uintptr(mp.id) // so 386 asm can find it var uc ucontextt getcontext(unsafe.Pointer(&uc)) uc.uc_flags = _UC_SIGMASK | _UC_CPU uc.uc_link = nil uc.uc_sigmask = sigset_all lwp_mcontext_init(&uc.uc_mcontext, stk, mp, mp.g0, funcPC(mstart)) ret := lwp_create(unsafe.Pointer(&uc), 0, unsafe.Pointer(&mp.procid)) if ret < 0 { print("runtime: failed to create new OS thread (have ", mcount()-1, " already; errno=", -ret, ")\n") gothrow("runtime.newosproc") } } func osinit() { ncpu = getncpu() } var urandom_dev = []byte("/dev/urandom\x00") //go:nosplit func getRandomData(r []byte) { fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) n := read(fd, unsafe.Pointer(&r[0]), int32(len(r))) close(fd) extendRandom(r, int(n)) } func goenvs() { goenvs_unix() } // Called to initialize a new m (including the bootstrap m). // Called on the parent thread (main thread in case of bootstrap), can allocate memory. func mpreinit(mp *m) { mp.gsignal = malg(32 * 1024) mp.gsignal.m = mp } // Called to initialize a new m (including the bootstrap m). // Called on the new thread, can not allocate memory. func minit() { _g_ := getg() _g_.m.procid = uint64(lwp_self()) // Initialize signal handling signalstack((*byte)(unsafe.Pointer(_g_.m.gsignal.stack.lo)), 32*1024) sigprocmask(_SIG_SETMASK, &sigset_none, nil) } // Called from dropm to undo the effect of an minit. func unminit() { signalstack(nil, 0) } func memlimit() uintptr { return 0 } func sigtramp() type sigactiont struct { sa_sigaction uintptr sa_mask sigset sa_flags int32 } func setsig(i int32, fn uintptr, restart bool) { var sa sigactiont sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK if restart { sa.sa_flags |= _SA_RESTART } sa.sa_mask = sigset_all if fn == funcPC(sighandler) { fn = funcPC(sigtramp) } sa.sa_sigaction = fn sigaction(i, &sa, nil) } func setsigstack(i int32) { gothrow("setsigstack") } func getsig(i int32) uintptr { var sa sigactiont sigaction(i, nil, &sa) if sa.sa_sigaction == funcPC(sigtramp) { return funcPC(sighandler) } return sa.sa_sigaction } func signalstack(p *byte, n int32) { var st sigaltstackt st.ss_sp = uintptr(unsafe.Pointer(p)) st.ss_size = uintptr(n) st.ss_flags = 0 if p == nil { st.ss_flags = _SS_DISABLE } sigaltstack(&st, nil) } func unblocksignals() { sigprocmask(_SIG_SETMASK, &sigset_none, nil) }