// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file contains the printf-checker. package main import ( "bytes" "flag" "go/ast" "go/constant" "go/token" "go/types" "strconv" "strings" "unicode/utf8" ) var printfuncs = flag.String("printfuncs", "", "comma-separated list of print function names to check") func init() { register("printf", "check printf-like invocations", checkFmtPrintfCall, funcDecl, callExpr) } func initPrintFlags() { if *printfuncs == "" { return } for _, name := range strings.Split(*printfuncs, ",") { if len(name) == 0 { flag.Usage() } // Backwards compatibility: skip optional first argument // index after the colon. if colon := strings.LastIndex(name, ":"); colon > 0 { name = name[:colon] } name = strings.ToLower(name) if name[len(name)-1] == 'f' { isFormattedPrint[name] = true } else { isPrint[name] = true } } } // isFormattedPrint records the formatted-print functions. Names are // lower-cased so the lookup is case insensitive. var isFormattedPrint = map[string]bool{ "errorf": true, "fatalf": true, "fprintf": true, "logf": true, "panicf": true, "printf": true, "sprintf": true, } // isPrint records the unformatted-print functions. Names are lower-cased // so the lookup is case insensitive. var isPrint = map[string]bool{ "error": true, "fatal": true, "fprint": true, "fprintln": true, "log": true, "panic": true, "panicln": true, "print": true, "println": true, "sprint": true, "sprintln": true, } // formatString returns the format string argument and its index within // the given printf-like call expression. // // The last parameter before variadic arguments is assumed to be // a format string. // // The first string literal or string constant is assumed to be a format string // if the call's signature cannot be determined. // // If it cannot find any format string parameter, it returns ("", -1). func formatString(f *File, call *ast.CallExpr) (string, int) { typ := f.pkg.types[call.Fun].Type if typ != nil { if sig, ok := typ.(*types.Signature); ok { if !sig.Variadic() { // Skip checking non-variadic functions return "", -1 } idx := sig.Params().Len() - 2 if idx < 0 { // Skip checking variadic functions without // fixed arguments. return "", -1 } s, ok := stringLiteralArg(f, call, idx) if !ok { // The last argument before variadic args isn't a string return "", -1 } return s, idx } } // Cannot determine call's signature. Fallback to scanning for the first // string argument in the call for idx := range call.Args { if s, ok := stringLiteralArg(f, call, idx); ok { return s, idx } } return "", -1 } // stringLiteralArg returns call's string constant argument at the index idx. // // ("", false) is returned if call's argument at the index idx isn't a string // literal. func stringLiteralArg(f *File, call *ast.CallExpr, idx int) (string, bool) { if idx >= len(call.Args) { return "", false } arg := call.Args[idx] lit := f.pkg.types[arg].Value if lit != nil && lit.Kind() == constant.String { return constant.StringVal(lit), true } return "", false } // checkCall triggers the print-specific checks if the call invokes a print function. func checkFmtPrintfCall(f *File, node ast.Node) { if d, ok := node.(*ast.FuncDecl); ok && isStringer(f, d) { // Remember we saw this. if f.stringers == nil { f.stringers = make(map[*ast.Object]bool) } if l := d.Recv.List; len(l) == 1 { if n := l[0].Names; len(n) == 1 { f.stringers[n[0].Obj] = true } } return } call, ok := node.(*ast.CallExpr) if !ok { return } var Name string switch x := call.Fun.(type) { case *ast.Ident: Name = x.Name case *ast.SelectorExpr: Name = x.Sel.Name default: return } name := strings.ToLower(Name) if _, ok := isFormattedPrint[name]; ok { f.checkPrintf(call, Name) return } if _, ok := isPrint[name]; ok { f.checkPrint(call, Name) return } } // isStringer returns true if the provided declaration is a "String() string" // method, an implementation of fmt.Stringer. func isStringer(f *File, d *ast.FuncDecl) bool { return d.Recv != nil && d.Name.Name == "String" && d.Type.Results != nil && len(d.Type.Params.List) == 0 && len(d.Type.Results.List) == 1 && f.pkg.types[d.Type.Results.List[0].Type].Type == types.Typ[types.String] } // formatState holds the parsed representation of a printf directive such as "%3.*[4]d". // It is constructed by parsePrintfVerb. type formatState struct { verb rune // the format verb: 'd' for "%d" format string // the full format directive from % through verb, "%.3d". name string // Printf, Sprintf etc. flags []byte // the list of # + etc. argNums []int // the successive argument numbers that are consumed, adjusted to refer to actual arg in call indexed bool // whether an indexing expression appears: %[1]d. firstArg int // Index of first argument after the format in the Printf call. // Used only during parse. file *File call *ast.CallExpr argNum int // Which argument we're expecting to format now. indexPending bool // Whether we have an indexed argument that has not resolved. nbytes int // number of bytes of the format string consumed. } // checkPrintf checks a call to a formatted print routine such as Printf. func (f *File) checkPrintf(call *ast.CallExpr, name string) { format, idx := formatString(f, call) if idx < 0 { if *verbose { f.Warn(call.Pos(), "can't check non-constant format in call to", name) } return } firstArg := idx + 1 // Arguments are immediately after format string. if !strings.Contains(format, "%") { if len(call.Args) > firstArg { f.Badf(call.Pos(), "no formatting directive in %s call", name) } return } // Hard part: check formats against args. argNum := firstArg indexed := false for i, w := 0, 0; i < len(format); i += w { w = 1 if format[i] == '%' { state := f.parsePrintfVerb(call, name, format[i:], firstArg, argNum) if state == nil { return } w = len(state.format) if state.indexed { indexed = true } if !f.okPrintfArg(call, state) { // One error per format is enough. return } if len(state.argNums) > 0 { // Continue with the next sequential argument. argNum = state.argNums[len(state.argNums)-1] + 1 } } } // Dotdotdot is hard. if call.Ellipsis.IsValid() && argNum >= len(call.Args)-1 { return } // If the arguments were direct indexed, we assume the programmer knows what's up. // Otherwise, there should be no leftover arguments. if !indexed && argNum != len(call.Args) { expect := argNum - firstArg numArgs := len(call.Args) - firstArg f.Badf(call.Pos(), "wrong number of args for format in %s call: %d needed but %d args", name, expect, numArgs) } } // parseFlags accepts any printf flags. func (s *formatState) parseFlags() { for s.nbytes < len(s.format) { switch c := s.format[s.nbytes]; c { case '#', '0', '+', '-', ' ': s.flags = append(s.flags, c) s.nbytes++ default: return } } } // scanNum advances through a decimal number if present. func (s *formatState) scanNum() { for ; s.nbytes < len(s.format); s.nbytes++ { c := s.format[s.nbytes] if c < '0' || '9' < c { return } } } // parseIndex scans an index expression. It returns false if there is a syntax error. func (s *formatState) parseIndex() bool { if s.nbytes == len(s.format) || s.format[s.nbytes] != '[' { return true } // Argument index present. s.indexed = true s.nbytes++ // skip '[' start := s.nbytes s.scanNum() if s.nbytes == len(s.format) || s.nbytes == start || s.format[s.nbytes] != ']' { s.file.Badf(s.call.Pos(), "illegal syntax for printf argument index") return false } arg32, err := strconv.ParseInt(s.format[start:s.nbytes], 10, 32) if err != nil { s.file.Badf(s.call.Pos(), "illegal syntax for printf argument index: %s", err) return false } s.nbytes++ // skip ']' arg := int(arg32) arg += s.firstArg - 1 // We want to zero-index the actual arguments. s.argNum = arg s.indexPending = true return true } // parseNum scans a width or precision (or *). It returns false if there's a bad index expression. func (s *formatState) parseNum() bool { if s.nbytes < len(s.format) && s.format[s.nbytes] == '*' { if s.indexPending { // Absorb it. s.indexPending = false } s.nbytes++ s.argNums = append(s.argNums, s.argNum) s.argNum++ } else { s.scanNum() } return true } // parsePrecision scans for a precision. It returns false if there's a bad index expression. func (s *formatState) parsePrecision() bool { // If there's a period, there may be a precision. if s.nbytes < len(s.format) && s.format[s.nbytes] == '.' { s.flags = append(s.flags, '.') // Treat precision as a flag. s.nbytes++ if !s.parseIndex() { return false } if !s.parseNum() { return false } } return true } // parsePrintfVerb looks the formatting directive that begins the format string // and returns a formatState that encodes what the directive wants, without looking // at the actual arguments present in the call. The result is nil if there is an error. func (f *File) parsePrintfVerb(call *ast.CallExpr, name, format string, firstArg, argNum int) *formatState { state := &formatState{ format: format, name: name, flags: make([]byte, 0, 5), argNum: argNum, argNums: make([]int, 0, 1), nbytes: 1, // There's guaranteed to be a percent sign. indexed: false, firstArg: firstArg, file: f, call: call, } // There may be flags. state.parseFlags() indexPending := false // There may be an index. if !state.parseIndex() { return nil } // There may be a width. if !state.parseNum() { return nil } // There may be a precision. if !state.parsePrecision() { return nil } // Now a verb, possibly prefixed by an index (which we may already have). if !indexPending && !state.parseIndex() { return nil } if state.nbytes == len(state.format) { f.Badf(call.Pos(), "missing verb at end of format string in %s call", name) return nil } verb, w := utf8.DecodeRuneInString(state.format[state.nbytes:]) state.verb = verb state.nbytes += w if verb != '%' { state.argNums = append(state.argNums, state.argNum) } state.format = state.format[:state.nbytes] return state } // printfArgType encodes the types of expressions a printf verb accepts. It is a bitmask. type printfArgType int const ( argBool printfArgType = 1 << iota argInt argRune argString argFloat argComplex argPointer anyType printfArgType = ^0 ) type printVerb struct { verb rune // User may provide verb through Formatter; could be a rune. flags string // known flags are all ASCII typ printfArgType } // Common flag sets for printf verbs. const ( noFlag = "" numFlag = " -+.0" sharpNumFlag = " -+.0#" allFlags = " -+.0#" ) // printVerbs identifies which flags are known to printf for each verb. // TODO: A type that implements Formatter may do what it wants, and vet // will complain incorrectly. var printVerbs = []printVerb{ // '-' is a width modifier, always valid. // '.' is a precision for float, max width for strings. // '+' is required sign for numbers, Go format for %v. // '#' is alternate format for several verbs. // ' ' is spacer for numbers {'%', noFlag, 0}, {'b', numFlag, argInt | argFloat | argComplex}, {'c', "-", argRune | argInt}, {'d', numFlag, argInt}, {'e', numFlag, argFloat | argComplex}, {'E', numFlag, argFloat | argComplex}, {'f', numFlag, argFloat | argComplex}, {'F', numFlag, argFloat | argComplex}, {'g', numFlag, argFloat | argComplex}, {'G', numFlag, argFloat | argComplex}, {'o', sharpNumFlag, argInt}, {'p', "-#", argPointer}, {'q', " -+.0#", argRune | argInt | argString}, {'s', " -+.0", argString}, {'t', "-", argBool}, {'T', "-", anyType}, {'U', "-#", argRune | argInt}, {'v', allFlags, anyType}, {'x', sharpNumFlag, argRune | argInt | argString}, {'X', sharpNumFlag, argRune | argInt | argString}, } // okPrintfArg compares the formatState to the arguments actually present, // reporting any discrepancies it can discern. If the final argument is ellipsissed, // there's little it can do for that. func (f *File) okPrintfArg(call *ast.CallExpr, state *formatState) (ok bool) { var v printVerb found := false // Linear scan is fast enough for a small list. for _, v = range printVerbs { if v.verb == state.verb { found = true break } } if !found { f.Badf(call.Pos(), "unrecognized printf verb %q", state.verb) return false } for _, flag := range state.flags { if !strings.ContainsRune(v.flags, rune(flag)) { f.Badf(call.Pos(), "unrecognized printf flag for verb %q: %q", state.verb, flag) return false } } // Verb is good. If len(state.argNums)>trueArgs, we have something like %.*s and all // but the final arg must be an integer. trueArgs := 1 if state.verb == '%' { trueArgs = 0 } nargs := len(state.argNums) for i := 0; i < nargs-trueArgs; i++ { argNum := state.argNums[i] if !f.argCanBeChecked(call, i, true, state) { return } arg := call.Args[argNum] if !f.matchArgType(argInt, nil, arg) { f.Badf(call.Pos(), "arg %s for * in printf format not of type int", f.gofmt(arg)) return false } } if state.verb == '%' { return true } argNum := state.argNums[len(state.argNums)-1] if !f.argCanBeChecked(call, len(state.argNums)-1, false, state) { return false } arg := call.Args[argNum] if f.isFunctionValue(arg) && state.verb != 'p' && state.verb != 'T' { f.Badf(call.Pos(), "arg %s in printf call is a function value, not a function call", f.gofmt(arg)) return false } if !f.matchArgType(v.typ, nil, arg) { typeString := "" if typ := f.pkg.types[arg].Type; typ != nil { typeString = typ.String() } f.Badf(call.Pos(), "arg %s for printf verb %%%c of wrong type: %s", f.gofmt(arg), state.verb, typeString) return false } if v.typ&argString != 0 && v.verb != 'T' && !bytes.Contains(state.flags, []byte{'#'}) && f.recursiveStringer(arg) { f.Badf(call.Pos(), "arg %s for printf causes recursive call to String method", f.gofmt(arg)) return false } return true } // recursiveStringer reports whether the provided argument is r or &r for the // fmt.Stringer receiver identifier r. func (f *File) recursiveStringer(e ast.Expr) bool { if len(f.stringers) == 0 { return false } var obj *ast.Object switch e := e.(type) { case *ast.Ident: obj = e.Obj case *ast.UnaryExpr: if id, ok := e.X.(*ast.Ident); ok && e.Op == token.AND { obj = id.Obj } } // It's unlikely to be a recursive stringer if it has a Format method. if typ := f.pkg.types[e].Type; typ != nil { // Not a perfect match; see issue 6259. if f.hasMethod(typ, "Format") { return false } } // We compare the underlying Object, which checks that the identifier // is the one we declared as the receiver for the String method in // which this printf appears. return f.stringers[obj] } // isFunctionValue reports whether the expression is a function as opposed to a function call. // It is almost always a mistake to print a function value. func (f *File) isFunctionValue(e ast.Expr) bool { if typ := f.pkg.types[e].Type; typ != nil { _, ok := typ.(*types.Signature) return ok } return false } // argCanBeChecked reports whether the specified argument is statically present; // it may be beyond the list of arguments or in a terminal slice... argument, which // means we can't see it. func (f *File) argCanBeChecked(call *ast.CallExpr, formatArg int, isStar bool, state *formatState) bool { argNum := state.argNums[formatArg] if argNum < 0 { // Shouldn't happen, so catch it with prejudice. panic("negative arg num") } if argNum == 0 { f.Badf(call.Pos(), `index value [0] for %s("%s"); indexes start at 1`, state.name, state.format) return false } if argNum < len(call.Args)-1 { return true // Always OK. } if call.Ellipsis.IsValid() { return false // We just can't tell; there could be many more arguments. } if argNum < len(call.Args) { return true } // There are bad indexes in the format or there are fewer arguments than the format needs. // This is the argument number relative to the format: Printf("%s", "hi") will give 1 for the "hi". arg := argNum - state.firstArg + 1 // People think of arguments as 1-indexed. f.Badf(call.Pos(), `missing argument for %s("%s"): format reads arg %d, have only %d args`, state.name, state.format, arg, len(call.Args)-state.firstArg) return false } // checkPrint checks a call to an unformatted print routine such as Println. func (f *File) checkPrint(call *ast.CallExpr, name string) { firstArg := 0 typ := f.pkg.types[call.Fun].Type if typ == nil { // Skip checking functions with unknown type. return } if sig, ok := typ.(*types.Signature); ok { if !sig.Variadic() { // Skip checking non-variadic functions. return } params := sig.Params() firstArg = params.Len() - 1 typ := params.At(firstArg).Type() typ = typ.(*types.Slice).Elem() it, ok := typ.(*types.Interface) if !ok || !it.Empty() { // Skip variadic functions accepting non-interface{} args. return } } args := call.Args if len(args) <= firstArg { // Skip calls without variadic args. return } args = args[firstArg:] // check for Println(os.Stderr, ...) if firstArg == 0 { if sel, ok := args[0].(*ast.SelectorExpr); ok { if x, ok := sel.X.(*ast.Ident); ok { if x.Name == "os" && strings.HasPrefix(sel.Sel.Name, "Std") { f.Badf(call.Pos(), "first argument to %s is %s.%s", name, x.Name, sel.Sel.Name) } } } } arg := args[0] if lit, ok := arg.(*ast.BasicLit); ok && lit.Kind == token.STRING { if strings.Contains(lit.Value, "%") { f.Badf(call.Pos(), "possible formatting directive in %s call", name) } } if strings.HasSuffix(name, "ln") { // The last item, if a string, should not have a newline. arg = args[len(args)-1] if lit, ok := arg.(*ast.BasicLit); ok && lit.Kind == token.STRING { if strings.HasSuffix(lit.Value, `\n"`) { f.Badf(call.Pos(), "%s call ends with newline", name) } } } for _, arg := range args { if f.isFunctionValue(arg) { f.Badf(call.Pos(), "arg %s in %s call is a function value, not a function call", f.gofmt(arg), name) } if f.recursiveStringer(arg) { f.Badf(call.Pos(), "arg %s in %s call causes recursive call to String method", f.gofmt(arg), name) } } }