// Derived from Inferno utils/6c/peep.c // http://code.google.com/p/inferno-os/source/browse/utils/6c/peep.c // // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) // Portions Copyright © 1997-1999 Vita Nuova Limited // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) // Portions Copyright © 2004,2006 Bruce Ellis // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others // Portions Copyright © 2009 The Go Authors. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. package main import ( "cmd/internal/obj" "cmd/internal/obj/i386" "fmt" ) import "cmd/internal/gc" const ( REGEXT = 0 exregoffset = i386.REG_DI ) var gactive uint32 // do we need the carry bit func needc(p *obj.Prog) bool { var info gc.ProgInfo for p != nil { proginfo(&info, p) if info.Flags&gc.UseCarry != 0 { return true } if info.Flags&(gc.SetCarry|gc.KillCarry) != 0 { return false } p = p.Link } return false } func rnops(r *gc.Flow) *gc.Flow { if r != nil { var p *obj.Prog var r1 *gc.Flow for { p = r.Prog if p.As != obj.ANOP || p.From.Type != obj.TYPE_NONE || p.To.Type != obj.TYPE_NONE { break } r1 = gc.Uniqs(r) if r1 == nil { break } r = r1 } } return r } func peep(firstp *obj.Prog) { g := gc.Flowstart(firstp, nil) if g == nil { return } gactive = 0 // byte, word arithmetic elimination. elimshortmov(g) // constant propagation // find MOV $con,R followed by // another MOV $con,R without // setting R in the interim var p *obj.Prog for r := g.Start; r != nil; r = r.Link { p = r.Prog switch p.As { case i386.ALEAL: if regtyp(&p.To) { if p.From.Sym != nil { if p.From.Index == i386.REG_NONE { conprop(r) } } } case i386.AMOVB, i386.AMOVW, i386.AMOVL, i386.AMOVSS, i386.AMOVSD: if regtyp(&p.To) { if p.From.Type == obj.TYPE_CONST || p.From.Type == obj.TYPE_FCONST { conprop(r) } } } } var r1 *gc.Flow var p1 *obj.Prog var r *gc.Flow var t int loop1: if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { gc.Dumpit("loop1", g.Start, 0) } t = 0 for r = g.Start; r != nil; r = r.Link { p = r.Prog switch p.As { case i386.AMOVL, i386.AMOVSS, i386.AMOVSD: if regtyp(&p.To) { if regtyp(&p.From) { if copyprop(g, r) { excise(r) t++ } else if subprop(r) && copyprop(g, r) { excise(r) t++ } } } case i386.AMOVBLZX, i386.AMOVWLZX, i386.AMOVBLSX, i386.AMOVWLSX: if regtyp(&p.To) { r1 = rnops(gc.Uniqs(r)) if r1 != nil { p1 = r1.Prog if p.As == p1.As && p.To.Type == p1.From.Type && p.To.Reg == p1.From.Reg { p1.As = i386.AMOVL t++ } } } case i386.AADDL, i386.AADDW: if p.From.Type != obj.TYPE_CONST || needc(p.Link) { break } if p.From.Offset == -1 { if p.As == i386.AADDL { p.As = i386.ADECL } else { p.As = i386.ADECW } p.From = obj.Addr{} break } if p.From.Offset == 1 { if p.As == i386.AADDL { p.As = i386.AINCL } else { p.As = i386.AINCW } p.From = obj.Addr{} break } case i386.ASUBL, i386.ASUBW: if p.From.Type != obj.TYPE_CONST || needc(p.Link) { break } if p.From.Offset == -1 { if p.As == i386.ASUBL { p.As = i386.AINCL } else { p.As = i386.AINCW } p.From = obj.Addr{} break } if p.From.Offset == 1 { if p.As == i386.ASUBL { p.As = i386.ADECL } else { p.As = i386.ADECW } p.From = obj.Addr{} break } } } if t != 0 { goto loop1 } // MOVSD removal. // We never use packed registers, so a MOVSD between registers // can be replaced by MOVAPD, which moves the pair of float64s // instead of just the lower one. We only use the lower one, but // the processor can do better if we do moves using both. for r := g.Start; r != nil; r = r.Link { p = r.Prog if p.As == i386.AMOVSD { if regtyp(&p.From) { if regtyp(&p.To) { p.As = i386.AMOVAPD } } } } gc.Flowend(g) } func excise(r *gc.Flow) { p := r.Prog if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { fmt.Printf("%v ===delete===\n", p) } obj.Nopout(p) gc.Ostats.Ndelmov++ } func regtyp(a *obj.Addr) bool { return a.Type == obj.TYPE_REG && (i386.REG_AX <= a.Reg && a.Reg <= i386.REG_DI || i386.REG_X0 <= a.Reg && a.Reg <= i386.REG_X7) } // movb elimination. // movb is simulated by the linker // when a register other than ax, bx, cx, dx // is used, so rewrite to other instructions // when possible. a movb into a register // can smash the entire 64-bit register without // causing any trouble. func elimshortmov(g *gc.Graph) { var p *obj.Prog for r := g.Start; r != nil; r = r.Link { p = r.Prog if regtyp(&p.To) { switch p.As { case i386.AINCB, i386.AINCW: p.As = i386.AINCL case i386.ADECB, i386.ADECW: p.As = i386.ADECL case i386.ANEGB, i386.ANEGW: p.As = i386.ANEGL case i386.ANOTB, i386.ANOTW: p.As = i386.ANOTL } if regtyp(&p.From) || p.From.Type == obj.TYPE_CONST { // move or artihmetic into partial register. // from another register or constant can be movl. // we don't switch to 32-bit arithmetic if it can // change how the carry bit is set (and the carry bit is needed). switch p.As { case i386.AMOVB, i386.AMOVW: p.As = i386.AMOVL case i386.AADDB, i386.AADDW: if !needc(p.Link) { p.As = i386.AADDL } case i386.ASUBB, i386.ASUBW: if !needc(p.Link) { p.As = i386.ASUBL } case i386.AMULB, i386.AMULW: p.As = i386.AMULL case i386.AIMULB, i386.AIMULW: p.As = i386.AIMULL case i386.AANDB, i386.AANDW: p.As = i386.AANDL case i386.AORB, i386.AORW: p.As = i386.AORL case i386.AXORB, i386.AXORW: p.As = i386.AXORL case i386.ASHLB, i386.ASHLW: p.As = i386.ASHLL } } else { // explicit zero extension switch p.As { case i386.AMOVB: p.As = i386.AMOVBLZX case i386.AMOVW: p.As = i386.AMOVWLZX } } } } } /* * the idea is to substitute * one register for another * from one MOV to another * MOV a, R0 * ADD b, R0 / no use of R1 * MOV R0, R1 * would be converted to * MOV a, R1 * ADD b, R1 * MOV R1, R0 * hopefully, then the former or latter MOV * will be eliminated by copy propagation. */ func subprop(r0 *gc.Flow) bool { p := r0.Prog v1 := &p.From if !regtyp(v1) { return false } v2 := &p.To if !regtyp(v2) { return false } var info gc.ProgInfo var r *gc.Flow for r = gc.Uniqp(r0); r != nil; r = gc.Uniqp(r) { if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { fmt.Printf("\t? %v\n", r.Prog) } if gc.Uniqs(r) == nil { break } p = r.Prog if p.As == obj.AVARDEF || p.As == obj.AVARKILL { continue } proginfo(&info, p) if info.Flags&gc.Call != 0 { return false } if info.Reguse|info.Regset != 0 { return false } if (info.Flags&gc.Move != 0) && (info.Flags&(gc.SizeL|gc.SizeQ|gc.SizeF|gc.SizeD) != 0) && p.To.Type == v1.Type && p.To.Reg == v1.Reg { goto gotit } if copyau(&p.From, v2) || copyau(&p.To, v2) { break } if copysub(&p.From, v1, v2, 0) != 0 || copysub(&p.To, v1, v2, 0) != 0 { break } } return false gotit: copysub(&p.To, v1, v2, 1) if gc.Debug['P'] != 0 { fmt.Printf("gotit: %v->%v\n%v", gc.Ctxt.Dconv(v1), gc.Ctxt.Dconv(v2), r.Prog) if p.From.Type == v2.Type && p.From.Reg == v2.Reg { fmt.Printf(" excise") } fmt.Printf("\n") } for r = gc.Uniqs(r); r != r0; r = gc.Uniqs(r) { p = r.Prog copysub(&p.From, v1, v2, 1) copysub(&p.To, v1, v2, 1) if gc.Debug['P'] != 0 { fmt.Printf("%v\n", r.Prog) } } t := int(v1.Reg) v1.Reg = v2.Reg v2.Reg = int16(t) if gc.Debug['P'] != 0 { fmt.Printf("%v last\n", r.Prog) } return true } /* * The idea is to remove redundant copies. * v1->v2 F=0 * (use v2 s/v2/v1/)* * set v1 F=1 * use v2 return fail * ----------------- * v1->v2 F=0 * (use v2 s/v2/v1/)* * set v1 F=1 * set v2 return success */ func copyprop(g *gc.Graph, r0 *gc.Flow) bool { p := r0.Prog v1 := &p.From v2 := &p.To if copyas(v1, v2) { return true } gactive++ return copy1(v1, v2, r0.S1, 0) } func copy1(v1 *obj.Addr, v2 *obj.Addr, r *gc.Flow, f int) bool { if uint32(r.Active) == gactive { if gc.Debug['P'] != 0 { fmt.Printf("act set; return 1\n") } return true } r.Active = int32(gactive) if gc.Debug['P'] != 0 { fmt.Printf("copy %v->%v f=%d\n", gc.Ctxt.Dconv(v1), gc.Ctxt.Dconv(v2), f) } var t int var p *obj.Prog for ; r != nil; r = r.S1 { p = r.Prog if gc.Debug['P'] != 0 { fmt.Printf("%v", p) } if f == 0 && gc.Uniqp(r) == nil { f = 1 if gc.Debug['P'] != 0 { fmt.Printf("; merge; f=%d", f) } } t = copyu(p, v2, nil) switch t { case 2: /* rar, can't split */ if gc.Debug['P'] != 0 { fmt.Printf("; %v rar; return 0\n", gc.Ctxt.Dconv(v2)) } return false case 3: /* set */ if gc.Debug['P'] != 0 { fmt.Printf("; %v set; return 1\n", gc.Ctxt.Dconv(v2)) } return true case 1, /* used, substitute */ 4: /* use and set */ if f != 0 { if gc.Debug['P'] == 0 { return false } if t == 4 { fmt.Printf("; %v used+set and f=%d; return 0\n", gc.Ctxt.Dconv(v2), f) } else { fmt.Printf("; %v used and f=%d; return 0\n", gc.Ctxt.Dconv(v2), f) } return false } if copyu(p, v2, v1) != 0 { if gc.Debug['P'] != 0 { fmt.Printf("; sub fail; return 0\n") } return false } if gc.Debug['P'] != 0 { fmt.Printf("; sub %v/%v", gc.Ctxt.Dconv(v2), gc.Ctxt.Dconv(v1)) } if t == 4 { if gc.Debug['P'] != 0 { fmt.Printf("; %v used+set; return 1\n", gc.Ctxt.Dconv(v2)) } return true } } if f == 0 { t = copyu(p, v1, nil) if f == 0 && (t == 2 || t == 3 || t == 4) { f = 1 if gc.Debug['P'] != 0 { fmt.Printf("; %v set and !f; f=%d", gc.Ctxt.Dconv(v1), f) } } } if gc.Debug['P'] != 0 { fmt.Printf("\n") } if r.S2 != nil { if !copy1(v1, v2, r.S2, f) { return false } } } return true } /* * return * 1 if v only used (and substitute), * 2 if read-alter-rewrite * 3 if set * 4 if set and used * 0 otherwise (not touched) */ func copyu(p *obj.Prog, v *obj.Addr, s *obj.Addr) int { switch p.As { case obj.AJMP: if s != nil { if copysub(&p.To, v, s, 1) != 0 { return 1 } return 0 } if copyau(&p.To, v) { return 1 } return 0 case obj.ARET: if s != nil { return 1 } return 3 case obj.ACALL: if REGEXT != 0 /*TypeKind(100016)*/ && v.Type == obj.TYPE_REG && v.Reg <= REGEXT && v.Reg > exregoffset { return 2 } if i386.REGARG >= 0 && v.Type == obj.TYPE_REG && v.Reg == i386.REGARG { return 2 } if v.Type == p.From.Type && v.Reg == p.From.Reg { return 2 } if s != nil { if copysub(&p.To, v, s, 1) != 0 { return 1 } return 0 } if copyau(&p.To, v) { return 4 } return 3 case obj.ATEXT: if i386.REGARG >= 0 && v.Type == obj.TYPE_REG && v.Reg == i386.REGARG { return 3 } return 0 } if p.As == obj.AVARDEF || p.As == obj.AVARKILL { return 0 } var info gc.ProgInfo proginfo(&info, p) if (info.Reguse|info.Regset)&RtoB(int(v.Reg)) != 0 { return 2 } if info.Flags&gc.LeftAddr != 0 { if copyas(&p.From, v) { return 2 } } if info.Flags&(gc.RightRead|gc.RightWrite) == gc.RightRead|gc.RightWrite { if copyas(&p.To, v) { return 2 } } if info.Flags&gc.RightWrite != 0 { if copyas(&p.To, v) { if s != nil { return copysub(&p.From, v, s, 1) } if copyau(&p.From, v) { return 4 } return 3 } } if info.Flags&(gc.LeftAddr|gc.LeftRead|gc.LeftWrite|gc.RightAddr|gc.RightRead|gc.RightWrite) != 0 { if s != nil { if copysub(&p.From, v, s, 1) != 0 { return 1 } return copysub(&p.To, v, s, 1) } if copyau(&p.From, v) { return 1 } if copyau(&p.To, v) { return 1 } } return 0 } /* * direct reference, * could be set/use depending on * semantics */ func copyas(a *obj.Addr, v *obj.Addr) bool { if i386.REG_AL <= a.Reg && a.Reg <= i386.REG_BL { gc.Fatal("use of byte register") } if i386.REG_AL <= v.Reg && v.Reg <= i386.REG_BL { gc.Fatal("use of byte register") } if a.Type != v.Type || a.Name != v.Name || a.Reg != v.Reg { return false } if regtyp(v) { return true } if v.Type == obj.TYPE_MEM && (v.Name == obj.NAME_AUTO || v.Name == obj.NAME_PARAM) { if v.Offset == a.Offset { return true } } return false } func sameaddr(a *obj.Addr, v *obj.Addr) bool { if a.Type != v.Type || a.Name != v.Name || a.Reg != v.Reg { return false } if regtyp(v) { return true } if v.Type == obj.TYPE_MEM && (v.Name == obj.NAME_AUTO || v.Name == obj.NAME_PARAM) { if v.Offset == a.Offset { return true } } return false } /* * either direct or indirect */ func copyau(a *obj.Addr, v *obj.Addr) bool { if copyas(a, v) { return true } if regtyp(v) { if a.Type == obj.TYPE_MEM && a.Reg == v.Reg { return true } if a.Index == v.Reg { return true } } return false } /* * substitute s for v in a * return failure to substitute */ func copysub(a *obj.Addr, v *obj.Addr, s *obj.Addr, f int) int { if copyas(a, v) { reg := int(s.Reg) if reg >= i386.REG_AX && reg <= i386.REG_DI || reg >= i386.REG_X0 && reg <= i386.REG_X7 { if f != 0 { a.Reg = int16(reg) } } return 0 } if regtyp(v) { reg := int(v.Reg) if a.Type == obj.TYPE_MEM && int(a.Reg) == reg { if (s.Reg == i386.REG_BP) && a.Index != obj.TYPE_NONE { return 1 /* can't use BP-base with index */ } if f != 0 { a.Reg = s.Reg } } // return 0; if int(a.Index) == reg { if f != 0 { a.Index = s.Reg } return 0 } return 0 } return 0 } func conprop(r0 *gc.Flow) { var p *obj.Prog var t int p0 := r0.Prog v0 := &p0.To r := r0 loop: r = gc.Uniqs(r) if r == nil || r == r0 { return } if gc.Uniqp(r) == nil { return } p = r.Prog t = copyu(p, v0, nil) switch t { case 0, // miss 1: // use goto loop case 2, // rar 4: // use and set break case 3: // set if p.As == p0.As { if p.From.Type == p0.From.Type { if p.From.Reg == p0.From.Reg { if p.From.Node == p0.From.Node { if p.From.Offset == p0.From.Offset { if p.From.Scale == p0.From.Scale { if p.From.Type == obj.TYPE_FCONST && p.From.U.Dval == p0.From.U.Dval { if p.From.Index == p0.From.Index { excise(r) goto loop } } } } } } } } } } func smallindir(a *obj.Addr, reg *obj.Addr) bool { return regtyp(reg) && a.Type == obj.TYPE_MEM && a.Reg == reg.Reg && a.Index == i386.REG_NONE && 0 <= a.Offset && a.Offset < 4096 } func stackaddr(a *obj.Addr) bool { return a.Type == obj.TYPE_REG && a.Reg == i386.REG_SP }