// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "runtime.h" #include "defs.h" #include "os.h" extern SigTab runtime·sigtab[]; // Linux futex. // // futexsleep(uint32 *addr, uint32 val) // futexwakeup(uint32 *addr) // // Futexsleep atomically checks if *addr == val and if so, sleeps on addr. // Futexwakeup wakes up one thread sleeping on addr. // Futexsleep is allowed to wake up spuriously. enum { FUTEX_WAIT = 0, FUTEX_WAKE = 1, EINTR = 4, EAGAIN = 11, }; // TODO(rsc): I tried using 1<<40 here but futex woke up (-ETIMEDOUT). // I wonder if the timespec that gets to the kernel // actually has two 32-bit numbers in it, so that // a 64-bit 1<<40 ends up being 0 seconds, // 1<<8 nanoseconds. static Timespec longtime = { 1<<30, // 34 years 0 }; // Atomically, // if(*addr == val) sleep // Might be woken up spuriously; that's allowed. static void futexsleep(uint32 *addr, uint32 val) { // Some Linux kernels have a bug where futex of // FUTEX_WAIT returns an internal error code // as an errno. Libpthread ignores the return value // here, and so can we: as it says a few lines up, // spurious wakeups are allowed. runtime·futex(addr, FUTEX_WAIT, val, &longtime, nil, 0); } // If any procs are sleeping on addr, wake up at least one. static void futexwakeup(uint32 *addr) { int64 ret; ret = runtime·futex(addr, FUTEX_WAKE, 1, nil, nil, 0); if(ret >= 0) return; // I don't know that futex wakeup can return // EAGAIN or EINTR, but if it does, it would be // safe to loop and call futex again. runtime·prints("futexwakeup addr="); runtime·printpointer(addr); runtime·prints(" returned "); runtime·printint(ret); runtime·prints("\n"); *(int32*)0x1006 = 0x1006; } // Lock and unlock. // // The lock state is a single 32-bit word that holds // a 31-bit count of threads waiting for the lock // and a single bit (the low bit) saying whether the lock is held. // The uncontended case runs entirely in user space. // When contention is detected, we defer to the kernel (futex). // // A reminder: compare-and-swap runtime·cas(addr, old, new) does // if(*addr == old) { *addr = new; return 1; } // else return 0; // but atomically. static void futexlock(Lock *l) { uint32 v; again: v = l->key; if((v&1) == 0){ if(runtime·cas(&l->key, v, v|1)){ // Lock wasn't held; we grabbed it. return; } goto again; } // Lock was held; try to add ourselves to the waiter count. if(!runtime·cas(&l->key, v, v+2)) goto again; // We're accounted for, now sleep in the kernel. // // We avoid the obvious lock/unlock race because // the kernel won't put us to sleep if l->key has // changed underfoot and is no longer v+2. // // We only really care that (v&1) == 1 (the lock is held), // and in fact there is a futex variant that could // accomodate that check, but let's not get carried away.) futexsleep(&l->key, v+2); // We're awake: remove ourselves from the count. for(;;){ v = l->key; if(v < 2) runtime·throw("bad lock key"); if(runtime·cas(&l->key, v, v-2)) break; } // Try for the lock again. goto again; } static void futexunlock(Lock *l) { uint32 v; // Atomically get value and clear lock bit. again: v = l->key; if((v&1) == 0) runtime·throw("unlock of unlocked lock"); if(!runtime·cas(&l->key, v, v&~1)) goto again; // If there were waiters, wake one. if(v & ~1) futexwakeup(&l->key); } void runtime·lock(Lock *l) { if(m->locks < 0) runtime·throw("lock count"); m->locks++; futexlock(l); } void runtime·unlock(Lock *l) { m->locks--; if(m->locks < 0) runtime·throw("lock count"); futexunlock(l); } void runtime·destroylock(Lock*) { } // One-time notifications. // // Since the lock/unlock implementation already // takes care of sleeping in the kernel, we just reuse it. // (But it's a weird use, so it gets its own interface.) // // We use a lock to represent the event: // unlocked == event has happened. // Thus the lock starts out locked, and to wait for the // event you try to lock the lock. To signal the event, // you unlock the lock. void runtime·noteclear(Note *n) { n->lock.key = 0; // memset(n, 0, sizeof *n) futexlock(&n->lock); } void runtime·notewakeup(Note *n) { futexunlock(&n->lock); } void runtime·notesleep(Note *n) { futexlock(&n->lock); futexunlock(&n->lock); // Let other sleepers find out too. } // Clone, the Linux rfork. enum { CLONE_VM = 0x100, CLONE_FS = 0x200, CLONE_FILES = 0x400, CLONE_SIGHAND = 0x800, CLONE_PTRACE = 0x2000, CLONE_VFORK = 0x4000, CLONE_PARENT = 0x8000, CLONE_THREAD = 0x10000, CLONE_NEWNS = 0x20000, CLONE_SYSVSEM = 0x40000, CLONE_SETTLS = 0x80000, CLONE_PARENT_SETTID = 0x100000, CLONE_CHILD_CLEARTID = 0x200000, CLONE_UNTRACED = 0x800000, CLONE_CHILD_SETTID = 0x1000000, CLONE_STOPPED = 0x2000000, CLONE_NEWUTS = 0x4000000, CLONE_NEWIPC = 0x8000000, }; void runtime·newosproc(M *m, G *g, void *stk, void (*fn)(void)) { int32 ret; int32 flags; /* * note: strace gets confused if we use CLONE_PTRACE here. */ flags = CLONE_VM /* share memory */ | CLONE_FS /* share cwd, etc */ | CLONE_FILES /* share fd table */ | CLONE_SIGHAND /* share sig handler table */ | CLONE_THREAD /* revisit - okay for now */ ; m->tls[0] = m->id; // so 386 asm can find it if(0){ runtime·printf("newosproc stk=%p m=%p g=%p fn=%p clone=%p id=%d/%d ostk=%p\n", stk, m, g, fn, runtime·clone, m->id, m->tls[0], &m); } ret = runtime·clone(flags, stk, m, g, fn); if(ret < 0) *(int32*)123 = 123; } void runtime·osinit(void) { } void runtime·goenvs(void) { runtime·goenvs_unix(); } // Called to initialize a new m (including the bootstrap m). void runtime·minit(void) { // Initialize signal handling. m->gsignal = runtime·malg(32*1024); // OS X wants >=8K, Linux >=2K runtime·signalstack(m->gsignal->stackguard, 32*1024); } void runtime·sigpanic(void) { switch(g->sig) { case SIGBUS: if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000) runtime·panicstring("invalid memory address or nil pointer dereference"); runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case SIGSEGV: if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000) runtime·panicstring("invalid memory address or nil pointer dereference"); runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case SIGFPE: switch(g->sigcode0) { case FPE_INTDIV: runtime·panicstring("integer divide by zero"); case FPE_INTOVF: runtime·panicstring("integer overflow"); } runtime·panicstring("floating point error"); } runtime·panicstring(runtime·sigtab[g->sig].name); }